HIGH PRODUCTION VOLUME (HPV)

CHALLENGE PROGRAM

APPENDIX 1

ROBUST SUMMARIES

FOR

HEXAHYDROPHTHALIC ANHYDRIDE (85-42-7)

RECEIVED
OPPT NOIC

Submitted to the U.S. EPA

By

The Industrial Health Foundation, Inc. Cyclic Anhydride Committee

Consortium Registration Number:

March, 2001

CONTENTS

		<u>CONTENTS</u>	<u>Page</u>
	1.	SUBSTANCE INFORMATION	1
		PHYSICAL-CHEMICAL DATA	2
	2.	A. MELTING POINT	2
		B. BOILING POINT	2
		C. VAPOR PRESSURE	3
		D. PARTITION COEFFICIENT n-OCTANOL/WATER	4
		D. PARTITION COEFFICIENT 11-OCTANOL/ WATER E. WATER SOLUBILITY	4
		E. WATER SOLUBILITY	
		F. pH VALUE, pKa VALUE	
	3.	ENVIRONMENTAL FATE AND PATHWAYS	5
	٥.	A PHOTODEGRADATION	>
•		R STARILITY IN WATER	3
		C. BIODEGRADATION	0
		D. BOD. COD OR RATIO BOD./COD	/
١		E. TRANSPORT AND DISTRIBUTION	7
		ECOTOXICITY	7
	4.	A. ACUTE/PROLONGED TOXICITY TO FISH	7
•		B. ACUTE TOXICITY TO AQUATIC INVERTEBRATES - DAPHNIA	8
		C. TOXICITY TO AQUATIC PLANTS - ALGAE	8
		C. TOXICITY TO AQUATIC PLANTS - ALGAE	
	5.	TOXICITY	8
		A ACUTE TOXICITY	0
		(1) ACUTE ORAL TOXICITY	8
.		(2) ACUTE INHALATION TOXICITY	9
		(2) ACUTE DERMAL TOXICITY	9
		P PEPEATED DOSE TOXICITY (GENERAL)	10
_		C GENETIC TOXICITY IN VITRO	,. 11
		(a) BACTERIAL TEST	11
		(b) NON-BACTERIAL IN VITRO TEST	11
		D. DEDDADI ICTIVE TOVICITY	11
mon,		E. DEVELOPMENTAL TOXICITY	11
		TOXICOLOGICAL INFORMATION CHARACTERISTIC FOR CYCLIC ANHYDRIDE CATEGORY	
	6.	A. CORROSIVENESS/IRRITATION	11
inen.		A. CORROSIVENESS/IRRITATION	11
		(1) SKIN IRRITATION/CORROSION	12
		(2) EYE IRRITATION/CORROSION	12
ECPs		B. SKIN SENSITIZATION	13
		C. RESPIRATORY SENSITIZATION	13
	7.	REFERENCES	15
	/ .	TOTAL MANAGE - TOTAL MANAGEMENT	

1. SUBSTANCE INFORMATION

CAS-Number

85-42-7

Name

Hexahydrophthalic Anhydride

Name

1,3-Isobenzofurandione, Hexahydro-

EINECS-Number

201-604-9

Molecular Formula

 $C_8H_{10}O_3$

Structural Formula

Other Chemical

Identity/Synonyms

 $1, 2\hbox{-Cyclohexane dicarboxylic acid anhydride}; Hexahydro-1, 3\hbox{-isobenzo fur and ione};$

Hexahydrophthalic acid anhydride; HHPAA

Molecular Weight

154.16

Type of Substance

element []; inorganic []; natural substance []; organic [X]; organometallic []; petroleum

product []

Physical State (at 20°C and 1.013 hPa)

gaseous []; liquid []; solid [X]

Purity

99% weight/weight (approx.)

SYNONYMS

1,3-Isobenzofurandione, Hexahydro; Cyclohexane-1,2-Dicarboxylic Anhydride; HHPAA

IMPURITIES

CAS No:

1687-30-5 (610-09-3, cis-; 2305-23-0 trans-)

EINECS No:

216-872-2

Name:

Hexahydrophthalic Acid

Value:

0.5% (maximum weight/weight)

Sulfated ash 0.1% max.; potassium 50 ppm max.; sodium 50 ppm max.; traces of tetrahydro PAA, hexahydrobenzoic acid and mixed anhydride

Reference: Buffalo Color Corp., 1/96

2. PHYSICAL-CHEMICAL DATA

A. MELTING POINT

(a)

Value:

35-37 °C

Decomposition:

Yes [] No [X] Ambiguous [] Yes [] No [X] Ambiguous []

Sublimation: Method:

No Data

GLP:

Yes [] No [] ? [X]

Reliability:

[2] Valid with restrictions

Remarks:

None

Reference:

Buffalo Color Corporation, MSDS 127-2639 (9/11/96)

(b)

Value:

34-38 °C

Decomposition:

Yes [] No [X] Ambiguous []

Sublimation:

Yes [] No [X] Ambiguous []

Method:

No Data

GLP:

Yes [] No [X] ? []

Reliability:

[2] Valid with restrictions

Remarks:

None

Reference:

Dixie Chemical Company, Inc., HHPA MSDS, 06/06/99

(c)

Value:

37 °C

Decomposition:

Yes [] No [X] Ambiguous []

Sublimation:

Yes [] No [X] Ambiguous []

Method:

No Data

GLP:

Yes [] No [] ? [X]

Reliability:

[2] Valid with restrictions

Remarks:

None

Reference:

Lonza Inc./Lonza Spa, HHPA MSDS, 3/14/95

B. BOILING POINT

(a)

Value:

158 °C

Pressure:

17 mm Hg

Decomposition:

Yes [] No [X] Ambiguous [] No Data

Method: GLP:

Yes [] No [] ? [X]

Reliability:

[2] Valid with restrictions

Remarks:

None

Reference:

Buffalo Color Corporation, MSDS 127-2639 (9/11/96)

B. BOILING POINT (continued)

(b)

Value:

144 °C

Pressure:

17 mm Hg

Decomposition:

Yes [] No [X] Ambiguous []

Method:

No Data

GLP:

Yes [] No [X] ? []

Reliability:

[2] Valid with restrictions

Remarks:

None

Reference:

Dixie Chemical Company, Inc., HHPA MSDS, 06/06/99

(c)

Value:

285 °C

Pressure:

No Data

Decomposition:

Yes [] No [X] Ambiguous []

Method:

No Data

GLP:

Yes [] No [] ? [X] [2] Valid with restrictions

Reliability:

None None

Remarks: Reference:

Buffalo Color Corporation, 1/96

(d)

Value:

296°C

Pressure:

760 mm Hg

Decomposition:

Yes [] No [X] Ambiguous []

Method:

No Data

GLP:

Yes [] No [] ? [X] [2] Valid with restrictions

Reliability:

None None

Remarks: Reference:

Lonza Inc./Lonza Spa, HHPA MSDS, 03/14/95

C. VAPOR PRESSURE

(a)

Value:

5.00 mm Hg

Temperature: Method:

106 °C calculated []; measured []; ? [X]

No Data

GLP:

Yes [] No [] ? [X]

Reliability:

[2] Valid with restrictions

Remarks:

None

Reference:

Buffalo Color Corporation, Tech Data Sheet "Anhydrides"

(b)

Value:

10.00 mm Hg

Temperature:

125 °C

Method:

calculated []; measured []? [X]

GLP:

Yes [] No [] ? [X]

Reliability:

[2] Valid with restrictions

Remarks:

None

Reference:

Buffalo Color Corporation, MSDS 127-2639 (9/11/96)

C. VAPOR PRESSURE

(c)

Value:

0.25 mm Hg

Temperature:

30 °C

Method:

calculated [X]; measured []?[]

GLP:

Yes [] No [] ? [X]

Reliability:

[2] Valid with restrictions

Remarks:

No Data

Reference:

Buffalo Color Corporation, 1/96

(d)

Value:

0.0068 mm Hg

Temperature:

25 °C

Method:

calculated [X]; measured []?[]

GLP:

Yes [] No [X] ? []

Reliability:

[2] Valid with restrictions

Remarks:

No Data

Reference:

Dixie Chemical Company, Inc., HHPA MSDS, 06/06/99

D. PARTITION COEFFICIENT log₁₀Pow

Log₁₀ Pow:

 1.33 ± 0.14

Temperature:

No Data

Method:

calculated []; measured []? [X]

GLP:

Yes [] No [] ? [X]

Reliability:

[2] Valid with restrictions

Remarks:

Octanol/Water Partition Coefficient, P=21.4

Reference:

Fuhr, A.B./R.J. Dugan, 1982; Buffalo Color Corporation, MSDS 127-2639

(9/11/96)

E. WATER SOLUBILITY

Value:

Insoluble - Hydrolyzes

Temperature:

No Data

Description:

Miscible[]; Of very high solubility [];

Of high solubility []; Soluble []; Slightly soluble [];

Of low solubility []; Of very low solubility []; Not soluble [X]

Method:

No Data

GLP:

Yes [X] No [] ? []

Reliability:

[2] Valid with restrictions

Remarks:

Hydrolyzes in water or dilute alkali to form diacid or salt. Slowly hydrolyzes in

dilute acids. Miscible with benzene, toluene, acetone, carbon tetrachloride, and chloroform. Soluble

in methanol

Reference:

Buffalo Color Corporation, MSDS 127-2639 (9/11/96)

pH VALUE, pKa VALUE F.

pH Value:

4.2

Concentration:

1% aqueous mixture

Temperature:

No Data

Method:

Calculated

GLP:

Yes [] No [] ? [X]

pKa value

No Data

Reliability:

[2] Valid with restrictions

Remarks:

No Data

Reference:

FDRL Report, January 28, 1981

ENVIRONMENTAL FATE AND PATHWAYS 3.

PHOTODEGRADATION

Type:

Air

Rate Constant:

 $0.45 \times 10^{-11} \text{ cm}^3\text{/molecule/sec}$

Degradation:

50% after 7.2 days

Method:

Calculated. AOP Computer Programs, Vers. 1.53; Syracuse Research Center, 1994

GLP:

Yes [] No [] ? [X]

Reliability:

[2] Valid with restrictions

Remarks:

Half-life refers to 12-hour days

Reference:

IUCLID Data Sheet, 6/9/94. Atkinson, R., Atkinson, R., A Structure-Activity Relationship for the Estimation

of Rate Constants for the Gas-Phase Reactions of OH Radicals With Organic Compounds, Int. J. Chem. Kinet

19:799-828, 1987.

STABILITY IN WATER B.

Type:

Field trial []; Laboratory []; Other [X]

Half life:

1 minute at 20 °C and pH=5.2

Degradation:

Not specified quantitatively

Method:

No Data

GLP:

Yes [] No [] ? [X]

Test substance:

No Data

Reliability:

[3] Valid with restrictions

Remarks:

Hexahydrophthalic anhydride will hydrolyze to diacid upon contact with water.

Reference:

Buffalo Color Corporation, 1/96

C. BIODEGRADATION

(a)

Type:

Aerobic [X]; Anaerobic []

Inoculum:

Activated Sludge

Concentration:

10 mg/L related to DOC

Medium:

No Data

Degradation:

9.7% after - hours

Kinetics:

No Data

Method:

OECD Guideline 303A

Test Substance:

No Data

Results:

Mean retention time of 3 hours

Test Conditions:

No Data

GLP:

Yes [] No [X] ? []

Reliability:

[1] Valid without restrictions

Remarks:

None

Reference:

IUCLID Data Sheet, 6/9/94. Huels, Unpublished Data

(b)

Type:

Aerobic [X]; Anaerobic []

Inoculum:

Activated Sludge

Chemical concentration:

100 mg/L

Medium:

No Data

Degradation:

No Data

Kinetics:

No Data

Method:

Method for Testing the Biodegradability of Chemical Substances by Microorganisms, stipulated in Testing Methods for New Chemical Substances (July 13, 1974). Essentially the same test as in OECD Guidelines for Testing of Chemicals for Ready Biodegradability OECD

Guideline 303A: Modified MITI Test (I) Guideline #301C, July 17, 1992.

Test Substance:

HHPA – 100% purity

Results:

Biodegradation (as measured by BOD) ranged from 1-6% at the end of the 28 day period in the three replicate tests. The percentage TOC ranged from 1-5% in the three test solutions at the end of the 28 day period. At the termination of cultivation, insoluble compound was not

observed and sludge growth was not observed.

Test Conditions:

Concentration of test substance was 100 mg/L. Concentration of activated sludge was 30 mg/l (as the concentration of suspended solid). Volume of test solution was 300 ml. Cultivation temperature was 25 °C and cultivation duration was 28 days. Change in BOD was measured continuously. The pH of the test solutions (sludge and test substance) was adjusted to pH 7 initially and was pH 7 at the end of the cultivation period. The pH of the control vessel (test substance dissolved in water) was 3.9 at the end of the 28 day period.

GLP:

Yes [X] No [] ? []

Reliability:

[1] Valid without restrictions

Remarks:

The percent biodegradation in the three test solutions as measured by BOD and TOC were as follows: Vessel 1-1% BOD, 5% TOC; Vessel 2-2% BOD, 1% TOC; and Vessel 3-6% BOD, 3% TOC. At the end of cultivation, insoluble compound and sludge growth were not observed in the test vessels. In the control solution, insoluble compound was not observed at

the end of the 28 day period.

Reference:

Karume Laboratory, Chemicals Evaluation and Research Institute, Japan. Unpublished Report;

May, 1985.

BOD₅,COD OR RATIO BOD₅/COD D.

ThOD:

 $1.87 \text{ g O}_2/\text{g}$

Method:

Calculated

Reliability:

[2] Valid with restrictions

Remarks:

None

Reference:

Buffalo Color Corp., 1/96

TRANSPORT AND DISTRIBUTION E.

No data.

ECOTOXICITY

ACUTE/PROLONGED TOXICITY TO FISH A.

(a)

Type of Test:

Static

Species/strain:

Oryzias latipes (Ricefish)

Exposure period:

48 Hours

Results:

 LC_{50} : > 500 mg;/L (estimated by Duodoroff Method)

Temperature:

 25 ± 2 °C

Method:

Japanese Industrial Standard (JIS K 0102-1998-71), Testing Methods for Industrial Waste

Water/ Acute Toxicity Test with Fish.

Test Substance:

Cis-1,3-cyclohexanedicarbosylic acid @ 98% purity.

Analytical Monitoring:

Yes [X]; No []

Remarks:

Test conditions: Volume of test water was 4 L. Temperature of water was 25 ± 2 °C. Concentration of dissolved oxygen was 7.3 mg/L initially and final concentration was 4.3

mg/L. Ten (10) fish were used per level.

GLP:

Yes [X] No [] ? []

Reliability:

[2] Valid with restrictions

Reference:

Karume Laboratory, Chemicals Evaluation and Research Institute, Unpublished Report,

December 1985.

(b)

Type of Test:

Static

Species/strain:

Leuciscus idus, (Freshwater fish)

Exposure period:

48 Hours

Results:

LC₅₀: 660 mg/L

Temperature:

No Data

Method:

Bestimmung dur Wirken von Wasserinhaltstoffe Auf Fischz, DIN 38412 Teilij

Test Substance:

No Data

Analytical Monitoring:

Yes []; No [X]

Remarks:

None

GLP:

Yes [] No [X] ? []

Reliability:

[2] Valid with restrictions

Reference:

IUCLID Data Sheet, 6/9/94. Huels, Unpublished Data, 1983.

ACUTE TOXICITY TO AQUATIC INVERTEBRATES - DAPHNIA В.

Type of Test:

Static

Species/strain:

Daphnia magna

Exposure period:

24 Hours

Results:

 $EC_{50} = 103 \text{ mg;/L}$

Temperature:

No Data

Method:

Daphnien-Kurzzeit Test, DIN 38412, Teel 11, Bestimmung der Wirking von Wasserunhalt-

Staffe auf Kleinkrebse

Test Substance:

No Data

Analytical Monitoring:

Yes []; No [X]

Remarks:

None

GLP: Reliability: Yes [] No [X] ? [] [2] Valid with restrictions

Reference:

IUCLID Data Sheet, 6/9/94. Huels-Bericht, A.W., 147; Unpublished Data, 1988.

TOXICITY TO AQUATIC PLANTS - ALGAE

Type of Test:

No Data

Species/strain:

Scenedesmus suspicatus, (Algae)

Exposure period:

Results:

EC₁₀: 54 mg;/L; EC₅₀: 95.6 mg/L; EC₉₀: 169.4 mg/L

Temperature:

No Data

Method:

Algeniruchstums-Hemin Test nach UBA, 1984

Test Substance: Analytical Monitoring: No Data No Data

Remarks:

Endpoint - growth rate

GLP:

Yes [] No [X] ? []

Reliability:

[2] Valid with restrictions

Reference:

IUCLID Data Sheet, 6/9/94. Huels-Bericht, A.W., 147; Unpublished Data, 1988.

TOXICITY 5.

A.

ACUTE TOXICITY

(1) ACUTE ORAL TOXICITY

(a)

Type:

 LD_0 []; LD_{100} []; LD_{50} [X]; LDL_0 []; Other []

Species/strain:

Sprague-Dawley rats

Value:

2700-2800 mg/kg (estimated, see Remarks)

Method:

5 rats/sex at doses of 1500, 2027, 2739, 3700 and 5000 mg/kg. Body weights were checked on days

1, 8 and 15. Daily observations and gross autopsies were conducted.

GLP:

Yes [X] No [] ? []

Test substance:

25% TS (w/w) in corn oil slurry

Remarks:

Decreased activity and/or urinary incontinence were seen at all doses. Survivors had normal weight

gains for 14 days post exposure. Mortality rates were 0 of 5 males and 1 of 5 females at 1500 mg/kg; 0 of 5 males and 0 of 5 females at 2027 mg/kg; 2 of 5 males and 3 of 5 females at 2739 mg/kg; 5 of 5 males and 4 of 5 females at 3700 mg/kg; and 5 of 5 males and 5 of 5 females at 5000 mg/kg. Necropsy was unremarkable in survivors. Decedents showed blood-like liquid, primarily in

the intestines.

Reliability:

[2] Valid with restrictions

Reference:

Food and Drug Research Laboratory, 1981.

(1) ACUTE ORAL TOXICITY (continued)

(b)

Type:

 LD_0 []; LD_{100} []; LD_{50} [X]; LDL_0 []; Other []

Species/strain:

Value:

3307 mg/kg

Method:

No Data Yes [X] No [] ? []

GLP: Test substance:

No Data

Remarks:

Moderately toxic. Limited data on doses and number of animals

Reliability:

[3] Not valid

Reference:

Oral report from Syracuse University Research Institute, 1980.

(2) ACUTE INHALATION TOXICITY

Type:

 LC_0 []; LC_{100} []; LC_{50} [X]; LCL_0 []; Other []

Species/strain:

Sprague-Dawley rats

Exposure time:

4 hours

Value:

 $LC_{50} > 1100 \text{ mg/m}^3 \text{ (aerosol)}$

Method:

A group of five(5) male and five(5) female rats were exposed for 4 hours to an aerosol of an 80%

(w/w) solution in ethanol - a maximum attainable concentration. Rats were observed daily. Body weights were taken on days 3, 4, 5, 8 and 15 post-exposure. Necropsies were done at termination.

GLP:

Yes [X] No [] ? []

Test substance:

80% (w/w) solution in ethanol

Remarks:

All rats survived and necropsies were unremarkable. Decreased activity was seen during exposure and body weights were depressed during the first week, followed by recovery in second week.

Particle size was a geometric mean size of 5.8 μ m (GSD = 2.2). Seventy-five (75) percent of the

particles were less than 10 µm indicating a respirable aerosol.

Reliability:

[2] Valid with restrictions

Reference:

Food and Drug Research Laboratory, Study No. 6771H, 1981.

(3) ACUTE DERMAL TOXICITY

Type:

 LD_0 []; LD_{100} []; LD_{50} [X]; LDL_0 []; Other []

Species/strain:

New Zealand albino rabbits

Value:

 $LD_{50} > 2000 \text{ mg/kg}$

Method:

Limit test (OECD modification). Five male and five female rabbits were dosed with the solid material at 2000 mg/kg body weight on abraded skin, under a porous gauze dressing, for 24 hours

and then observed for 14 days. Body weights were taken on days 1, 8 and 15 and gross autopsies

were done at termination.

GLP:

Yes [X] No [] ? []

Test substance:

Solid material - unknown purity

Remarks:

No rabbits died and no gross signs were seen except minimal irritation on day 2. Gross autopsy at

termination was unremarkable.

Reliability:

[2] Valid with restrictions

Reference:

Food and Drug Research Laboratory Study No. 6771 H, 1981.

REPEATED DOSE TOXICITY (General) В.

(a)

Species/strain:

Mice

Sex:

Female []; Male []; Male/Female []; No Data [X]

Route of Administration:

Intraperitoneal

Exposure period:

8 days No Data

Frequency of treatment: Post exp. observation period:

No Data

Dose:

500 mg/kg/day

Control group:

Yes []; No []; No Data [X]; Concurrent no treatment []; Concurrent vehicle [];

Historical []

NOEL:

No Data

LOEL:

No Data

Results:

6 out of 6 "tumor bearing" mice survived 500 mg/kg x 8 days with no toxic signs reported.

Method:

No Data

GLP:

Yes []; No []; ? [X]

Test substance:

Comments: None

Reliability: Reference:

[3] Not valid Southern Research Laboratory Report NSC 8622 to CGNSC, 2/21/57.

Species/strain:

Rat

Sex:

Female []; Male []; Male/Female []; No Data [X]

Route of Administration:

Gavage

Exposure period:

300 days 5 days/week

Frequency of treatment:

Post exp. observation period:

No Data

Dose:

330 mg in olive oil/kg/day (10 animals/group)

Control group:

Yes []; No []; No Data [X]; Concurrent no treatment []; Concurrent vehicle [];

Historical []

NOEL:

No Data

LOEL:

No Data

Results:

5 out of 10 rats survived over 300 days at a feeding level of 330 mg/kg/day in olive oil.

(2 killed by accident) No information on body weight, toxic signs or pathology.

Method:

No Data

GLP:

Yes []; No []; ? [X]

Test substance:

Comments: None

Reliability:

[3] Not valid.

Reference:

Letter: Ferber, K. H./B. M. Helfaer, 1957. Re: Syracuse U. Res. Inst. Oral Report, Item

5.0.21, 12/16/57.

GENETIC TOXICITY IN VITRO C.

(a)

BACTERIAL

Type:

Bacterial reverse mutation assay (Ames test)

Species/strain:

Salmonella typhimurium bacteria (Strains TA98, TA100, TA1535, TA1537, and TA 1538)

Test System: Concentration: Standard plate method Up to 1000 µg/plate

Metabolic Activation:

With [X]; Without [X]

Results:

Not mutagenic

Cytotoxic Concentration: No Data Precipitation:

No Data

Genotoxic Effects:

Negative with and without metabolic activation

Method:

Standard Ames test as cited in Mutation Research 31:347-364, 1975.

GLP:

Yes [] No [X] ? []

Test substance:

No Data

Remarks:

None.

Reliability:

[2] Valid with restrictions.

Reference:

IUCLID Data Sheet, 6/9/94. Huels Report No. 7923, Unpublished Data, 1979.

(b)

NON-BACTERIAL IN VITRO TEST (CHROMOSOME ABERRATION)

No Data

REPRODUCTIVE TOXICITY D.

No Data

DEVELOPMENTAL TOXICITY E.

No Data

TOXICOLOGICAL INFORMATION CHARACTERISTIC FOR CYCLIC ANHYDRIDE CATEGORY 6.

CORROSIVENESS/IRRITATION

(1) SKIN IRRITATION/CORROSION

Dermal Irritation/Corrosivity

Species/strain:

New Zealand albino rabbits

Results:

Highly corrosive []; Corrosive []; Highly irritating [];

Irritating []; Moderate irritating []; Slightly irritating [X]; Not irritating []

Classification:

Highly corrosive (causes severe burns) []; Corrosive (caused burns) []; Irritating [X]; Not irritating []

Method:

Draize test. Application of 0.5 ml of various solutions to each of 6 rabbits with scoring at 24 and 72

hours.

GLP:

Yes [X] No [] ? []

Test substance:

Concentrations of 6.25, 12.5, 25, and 50% in mineral oil

Remarks:

Minimal to slight irritation was seen at $\leq 50\%$. Classified as "irritating" in accordance with EC

Directive 6/548/EEC. Primary irritation scores were: 0.17 at 6.25%; 0.67 at 12.5%; 0.58 at 25%;

and 0.92 at 50% (0.92 = minimal to slight irritation). Mineral oil alone scored 0.42.

Reliability:

[2] Valid with restrictions

Reference:

Food Drug Research Laboratory, Study No. 7232H, 1982.

(2) EYE IRRITATION/CORROSION

(a)

Type:

OECD (Irrigation and non-irrigation)

Species/strain:

New Zealand albino rabbits

Results:

Highly corrosive []; Corrosive [X]; Highly irritating [X];

Irritating []; Moderate irritating []; Slightly irritating []; Not irritating []

Classification:

Irritating []; Not irritating []; Risk of serious damage to eyes [X]

Method:

Draize Test. One hundred (100) mg of solid material was applied to 6 rabbits without irrigation and to 3 rabbits each for irrigation at either 4 or 30 seconds. Irritant effects were scored up to 21 days.

GLP:

Yes [X] No [] ? []

Test substance:

Undiluted solid

Remarks:

HHPA may cause "Risk of Serious Damage to Eyes" in accordance with EC Directive 67/543/EEC. Unwashed eyes and those washed at 30 seconds showed severe irritation and corrosion with no recovery at 21 days. Rabbits irrigated at 4 seconds showed severe but reversible irritation by 19

Reliability:

[2] Valid with restrictions.

Reference:

FDRL Report of Study 6771-H, February 27, 1981

Species/strain:

Rabbit

Results:

Highly corrosive []; Corrosive []; Highly irritating [];

Irritating []; Moderate irritating [X]; Slightly irritating []; Not irritating []

Classification:

Irritating [X]; Not irritating []; Risk of serious damage to eyes []

Method:

Draize Test

GLP:

Yes [X] No [] ? []

Test substance: Reliability:

No Data [3] Not valid

Remarks:

Washout after 4 seconds. Score of 39 on a Draize scale of 110 at 24 hours was reported.

Reference:

FDRL Report of Study 6771-H, February 27, 1981

(c)

Species/strain:

Rabbit

Results:

Highly corrosive []; Corrosive []; Highly irritating [X];

Irritating []; Moderate irritating []; Slightly irritating []; Not irritating []

Classification:

Irritating [X]; Not irritating []; Risk of serious damage to eyes []

Method:

Draize Test

GLP:

Yes [] No [] ? [X]

Test substance: Reliability:

Comments: None [3] Not valid

Remarks:

Washout after 30 seconds. 86 on a Draize scale of 110 at 13 days.

Reference:

FDRL Report of Study 6771-H, February 27, 1981

B. SKIN SENSITIZATION

Type:

Species/strain:

Human

Results:

Sensitizing [X]; Not sensitizing []; ambiguous []

Classification:

Sensitizing [X]; Not sensitizing []

Method:

No Data

GLP:

Yes [X] No [] ? []

Test substance:

5% suspension HHPAA in mineral oil (10 repeat test). None

Reliability:

[2] Valid with restrictions

Remarks:

Four out of fifty-three subjects gave a low grade sensitivity reaction and one marked reaction

indicating sensitization.

Reference:

Buffalo Color Corporation, MSDS 127-2639 (9/11/96); FDRL Report of Study OE No. 2471, May

7, 1982.

C. RESPIRATORY SENSITIZATION

Note: Organic acid anhydrides in general are low molecular weight, reactive molecules that have been associated with mucosal irritation, skin and respiratory sensitization, severe eye irritation and mild to moderate skin irritation. All of the anhydrides within the cyclic anhydride category are corrosive to the eyes. Sensitization has been noted in various studies on both humans and animals; however, no studies were located for NMA. Symptoms of over-exposure include rhinitis, conjunctivitis and asthma-like effects. Specific serum IgE and IgG antibodies to a fairly large number of anhydrides have been found in exposed workers.

Manufacturers of HHPA have not reported significant adverse effects on worker health but exposure levels are unknown. Transient effects (skin, eye, and respiratory tract irritation) have been noted as well as general signs like anemia, headache, fever and dizziness. Hypersensitivity effects have also been reported and include asthma, urticaria, contact dermatitis, fever, chills, hemolysis and respiratory sensitizations. Several key studies are subsequently summarized.

References: Grammer, et. al, 1994 and 1995 (HHPA); Kanerva, et al., 1997 and 1997; Welinder, 1991 (MHHPA) Welinder, et al., 1990 and 1994 (MTHPA); Buffalo Color Corporation, 1995 (NMA)

(a)

Method:

A questionnaire, lung function, and blood tests were given to HHPA exposed workers to determine

the presence of immunoglobulin-E(IgE) and immunoglobulin-G (IgG) antibodies against

hexahydrophthalic human serum albumin (HHP-HSA). The 57 workers who reported symptoms or demonstrated specific antibodies were skin tested with HHP-HSA and interviewed and examined by

a physician.

Results:

Sixteen of the 57 were found to have IgE mediated disease and seven had both IgE and IgG

mediated disease.

Reliability:

[2] Valid with restrictions

Remarks:

IgE and IgG antibody status were found to be significant positive predictors for IgE and IgG disease

respectively. The authors concluded that development of following exposure to HHPA, the development of immunologically mediated respiratory disease is most closely associated with development of IgE or IgG antibodies to HHP-HSA and exposure level. After the workers were removed from exposure for 1 year, no symptoms, physical findings, spirometry or chest x-rays indicated permanent damage due to HHPAA-induced respiratory disease; however, both serum IgE

and IgG for HHPAA persisted in the workers after 1 year.

Reference:

Grammer, L.C., et al., 1994; Grammer, L. C., 1995

RESPIRATORY SENSITIZATION (continued) C.

(b)

Method:

Historical data

Results:

Source: Buffalo Color Corporation

No serious incidents, case reports, or other epidemiology was noted in workers exposed to HHPAA.

Reliability:

[4] Not assignable

Remarks:

Manufactured by Buffalo Color Corporation for a number of years without reported significant adverse effects on health but early exposure levels are unknown. There have been cases of transient

irritation.

Reference:

Buffalo Color Corporation, Occupational and Environmental Health Hazard Summary and

Evaluation of Commercial Grade Chemicals, Issue No. 4, pg. 12, Date: 12/95.

(c)

Method:

In a cross-sectional study on 95 workers in two plants which used HHPA as a hardener for epoxy resin the radio allergo sorbent test (RAST) and enzyme linked immunosorbent assay were used to determine antibody levels to IgE and IgG respectively. The mean time of exposure was 7 hours

(range 0.1-25) years.

Results:

The specific IgE and IgG levels were significantly increased in workers as compared with external

referents or unexposed workers.

Reliability:

[2] Valid with restrictions

Remarks:

Study indicates that short-time peak exposures may affect IgE sensitization and HHPA can cause

sensitization even at low levels.

Reference:

Welinder, H.E., et al., 1994.

(d)

Method:

Nasal challenge tests were performed with a conjugate of HHPA and human serum albumin (HAS)

at three increasing concentrations in exposed workers to test the pathogenetic relevance of serum

antibodies (IgE and IgG).

Results:

Eleven subjects who reported work-related nasal symptoms and were IgE-sensitized against HHPA (Positive in skin-prick test and RAST against HHPA-HAS conjugate) had a decrease of nasal inspiratory peak flow and a significant increase of symptoms after the challenges. Eleven unsensitized subjects with no symptoms and nine unsensitized subjects who complained of work-

related nasal symptoms displayed no significant change in any parameter.

Reliability:

Remarks:

[2] Valid with restrictions

The authors concluded that symptoms in some of the workers were caused by an IgE-mediated mast

cell degranulation and ensuing inflammatory reaction involving eosinophil and neutrophil cells.

Reference:

Neilsen, J., et al., 1994

(e)

Method:

Results from a radio allergo sorbent test (RAST) and skin prick test (using 1% and 5% acetonic solution) of commercially available phthalic anhydride were compared to results from RAST and

skin prick tests using the not commercially available conjugates of HHPA and MTHPA. 110 employees exposed to HHPA and MTHPA were examined using the PA conjugates and 109 of the

110 were examined using HHPA and MTHPA conjugates.

Results:

Specific IgE against acid anhydrides was detected in a total of 17 persons and 6 sensitizations in the challenge test were clinically relevant. The PA conjugate RAST produced three false negatives and

one false positive when compared with a RAST using HHPA and MTHPA conjugates when borderline positive findings using the PA conjugate RAST were included. In comparison with the

RAST, the skin prick test gave three false positive and three false negative results.

Reliability:

Remarks:

[2] Valid with restrictions The authors concluded that RASTs with conjugates of PA and skin prick tests with native acid

anhydrides can validly ascertain workplace-related sensitizations to HHPA and MTHPA.

Reference:

Drexler, H., et al., 1994

7. REFERENCES

- Buffalo Color Corporation, MSDS File 127-2639, August 10, 1979.
- Buffalo Color Corporation, MSDS 127-2639, June 12, 1989.
- Buffalo Color Corporation, Material Safety Data Sheet for Hexahydrophthalic Anhydride, 3/87
- Buffalo Color Corporation, Material Safety Data Sheet for Hexahydrophthalic Anhydride, 9/96.
- Buffalo Color Corporation, Occupational and Environmental Health Hazard Summary and Evaluation of Commercial Grade Chemicals: Hexahydrophthalic Anhydride, Issue No. 5, 1/96.
- Buffalo Color Corporation, Technical Data Sheet, "Anhydrides."
- Butterfield, D.A., et al., Spin-Labeling Studies of the Interaction of Dicarboxylic Acid Neurotoxins with Human Erythrocyte Membranes.

 IV. Effects of Maleic, Succinic, Fumaric and Cyclic Non-aromatic Acids, Biochem. Arch. 2:245-252, 1986. CA106:4533N*.
- Dixie Chemical Company, Inc., Hexahydrophthalic Anhydride Material Safety Data Sheet, 06/06/99
- Drexler, H., Detection and Clinical Relevance of a Type I Allergy with Occupational Exposure to Hexahydrophthalic Anhydride and Methyl Tetrahydrophthalic Anhydride, Int. Arch. Occup. Environ. Health 65:279-283, 1994.
- FDRL, Report of Study 6771-H, January 13, 1981.
- FDRL, Report of Study 6771-H, April 21, 1981.
- FDRL, Report of Study 6771-H, September 30, 1981.
- FDRL, Report of Study 6771-H, February 27, 1981.
 - FDRL, Report of Study 7232-H, March 5, 1982.
 - FDRL, Report of Study OE No. 2471, May 7, 1982.
- Grammer, L., Study of Employees with Anhydride-Induced Respiratory Disease After Removal from Exposure, J. Occup. Med. 7:820-825, 1995.
 - Grammer, L., Risk Factors for Immunologically Medicated Respiratory Disease from Hexahydrophthalic Anhydride, J. Occup. Med. 6:642-646, 1994.
 - Grammer, L., "Value of Anitbody Level in Diagnosing Anhydride Induced Immunologic Respiratory Disease," Journal of Laboratory Clinical Medicine., No. 5:650-653, 1995.
 - Grammer, L. C. et al., Hemorrhagic Rhinitis An Immunologic Disease due to Hexahydrophthalic Anhydride, Chest 104(6):1792 -1794, 1993
 - Grammer, L. C. et al., Risk Factors for Immunologically Mediated Respiratory Disease from Hexahydrophthalic Anhydride, J. Occup. Med. 36(6):642-646, 1994
 - Handbook of Chemistry and Physics 61st Edition 1980-1, CRC PRESS, Boca Raton, FL, (HHPA listed as cyclohexane 1,2-dicarboxylic acid (cis)).
 - IUCLID Data Sheet, Lonza Inc./Lonza Spa; 6/9/94.

- Kanerva, L. et al., Delayed and Immediate Allergy caused by Methylhexahydrophthalic Anhydride, Contact Dermatitis 36(1):34-38, 1997
- Kanerva, L. et al., Airborne Allergic Contact Urticaria from Methylhexahydrophthalic Anhydride and Hexahydrophthalic Anhydride Contact Dermatitis 41(6):339-341, 1999
- Karume Laboratory, Chemical Evaluation and Research Institute, Japan, Unpublished Report, May 1985.
- Letter, Ferber, K.H./B.M. Helfaer, December 16, 1957, Re: Oral report from Syracuse University Res. Institute, Item S.U. 21.
 - Letter, Fuhr, A.B./R.J. Duggan, June 25, 1982.
- Lonza Inc./Lonza Spa, Hexahydrophthalic Anhydride Material Safety Data Sheet, 3/14/95
 - Nielson, J., Nasal Challenge Shows Pathogenetic Relevance of Specific IgE Serum Antibodies for Nasal Symptoms Caused by Hexahydrophthalic Anhydride, Clin. And Exper. Allergy 5:440-449, 1994.
 - Southern Res. Report., NSC 8622 to CCNSC, February 28, 1957.
- Syracuse University Research Institute, Oral Report Item 5.1.21, December 16, 1957
- Welinder, H., Exposure-Response Relationships in the Formation of Specific Antibodies to Hexahydrophthalic Anhydride in Exposed Workers, Scand. J. Work. Environ. Health 20:459-465, 1994.
 - Welinder, H., Immunologic tests of Specific Antibodies to Organic Acid Anhydrides, Allergy 46:601-609, 1991.
- Welinder, H. et al., Structure-Activity Relationships of Organic Acid Anhydrides as Antigens in an Animal Model, Toxicol. 103(2): 127-136, 1995
- Welinder, H., et al., Specific Antibodies to Methyltetahydrophthalic Anhydride in Exposed Workers, Clin. Exp. Allergy 20(6):639-646, 1990.
- Welinder, H. and Nielsen, J., Immunologic Tests of Specific Antibodies to Organic Acid Anhydrides, Allergy 46:601-609, 1991

HIGH PRODUCTION VOLUME (HPV) CHALLENGE PROGRAM

APPENDIX 2

ROBUST SUMMARIES

FOR

TETRAHYDROPHTHALIC ANHYDRIDE (85-43-8)

Submitted to the U.S. EPA

 $\mathbf{B}\mathbf{y}$

The Industrial Health Foundation, Inc. Cyclic Anhydride Committee

Consortium Registration Number:

March, 2001

CONTENTS

		CONTENTS	Page
		SUBSTANCE INFORMATION	1
	1.	SUBSTANCE INFORMATION	
	2.	PHYSICAL-CHEMICAL DATA	1
	۷.	A MEI TING POINT	1
		R ROII ING POINT	2
		C VAPOR PRESSIRE	3
		D. DADTITION COFFEICIENT n-OCTANOL/WATER	3
		E WATER SOLUBILITY	4
		F. pH VALUE, pKa VALUE	4
	3.	ENVIRONMENTAL FATE AND PATHWAYS	5
	٥.	A DIJOTODECD AD ATION	Э
	*	R STARII ITY IN WATER)
		C DIODECPADATION	5
		D. TRANSPORT AND DISTRIBUTION	5
•			
	4.	ECOTOXICITY	6
	٦.	A CUTE/DROLONGED TOVICITY TO FISH	0
		B. ACUTE TOXICITY TO AQUATIC INVERTEBRATES - DAPHNIA	/
		C. TOXICITY TO AQUATIC PLANTS - ALGAE	7
	5.	TOXICITY	7
•	٥.	A ACUTE TOXICITY	/
		(1) ACUTE ORAL TOXICITY	/
		(2) ACUTE INHALATION TOXICITY	0
724		(2) ACLITE DERMAL TOXICITY	8
		R REPEATED DOSE TOXICITY (GENERAL)	8
		C GENETIC TOXICITY IN VITRO	>
Ma.		(1) BACTERIAL TEST	9
		O) NON-BACTERIAL IN VITRO TEST	9
		D. PEPRODUCTIVE TOXICITY	9
		E. DEVELOPMENTAL TOXICITY	9
and a			
	6.	TOXICOLOGICAL INFORMATION CHARACTERISTIC FOR CYCLIC ANHYDRIDE CATEGORY	9
	0.	A COPPOSIVENESS/IRRITATION	
H0034		(1) SVIN IDDITATION/CORROSION	9
		(2) EVE IRRITATION/CORROSION	10
		D CKIN SENSITIZATION	11
		C. RESPIRATORY SENSITIZATION	11
	7	REFERENCES	12
			

GENERAL INFORMATION 1.

CAS-Number

85-43-8

Name

4-Cyclohexene-1,2-dicarboxylic anhydride

CAS Descriptor

Not Applicable

EINECS-Number

201-605-4

Molecular Formula

 $C_8O_8O_3$

Structural Formula

Other Chemical

Identity/Synonyms

4-Cyclohexene-1,2-dicarboxylic acid, anhydride (cis); Tetrahydrophthalic anhydride;

1,2,3,6-Tetrahydrophthalic anhydride; THPA

Type of Substance

 $element\ [\];\ inorganic\ [\];\ natural\ substance\ [\];\ organic\ [X];\ organometallic\ [\];\ petroleum$

product []

Physical State (at 20°C and 1.013 hPa)

gaseous []; liquid []; solid [X]

Purity

>99% weight/weight (approx.)

SYNONYMS

4-Cyclohexene-1,2-dicarboxylic acid, anhydride (cis); THPA

IMPURITIES

No Data

PHYSICAL-CHEMICAL DATA 2.

MELTING POINT A.

(a)

Value:

99 °C (210 °F) minimum

Decomposition:

No Data

Sublimation:

No Data

Method:

No Data

GLP:

Yes [] No [X] ? [] [2] Valid with restrictions

Reliability:

Remarks:

None

Reference:

Dixie Chemical Company, MSDS (8/13/98)

MELTING POINT (continued)

(b)

Value:

102 °C (216 °F) minimum

Decomposition:

No Data No Data

Sublimation: Method:

No Data

GLP:

Yes [] No [] ? [X] [2] Valid with restrictions

Reliability:

None

Remarks:

Reference:

Lonza Inc./Lonza Spa, MSDS 4445 THPA (3/14/95)

(c)

Value:

100 °C (212 °F) minimum

Decomposition:

No Data No Data

Sublimation: Method:

No Data

GLP: Reliability: Yes [] No [] ? [X] [2] Valid with restrictions

Remarks:

None

Reference:

EUCLID Data Sheet, 1994

BOILING POINT B.

(a)

Value:

195 °C

Pressure: Decomposition: 50 mm Hg No Data

Method:

No Data

GLP:

Yes [] No [] ? [X]

Reliability:

[3] Not valid

Remarks:

None

Reference:

Lonza Inc./Lonza Spa, MSDS 4445 THPA (3/14/95)

(b)

Value:

195 °C

Pressure:

1013 hPa

Decomposition:

No Data

Method:

No Data

GLP:

Yes [] No [] ? [X] [3] Not valid

Reliability: Remarks:

None

Reference:

EUCLID Data Sheet, 1994

C. VAPOR PRESSURE

(a)

Value:

<0.01 mm Hg

Temperature:

20 °C

Method:

calculated [X]; measured []; ? []

No Data

GLP:

Yes [] No [X] ? []

Reliability:

[2] Valid with restrictions

Remarks:

None

Reference:

Dixie Chemical Co., Inc., MSDS (8/13/98)

(b)

Value:

 $0.01~\mathrm{mm}~\mathrm{Hg}$

Temperature:

20 °C

Method:

calculated []; measured []; ? [X]

No Data

GLP:

Yes [] No [] ? [X]

Reliability:

[2] Valid with restrictions

Remarks:

None

Reference:

Lonza Inc./Lonza Spa, MSDS 4445 THPA (3/14/95)

(c)

Value:

50.0 mm Hg

Temperature:

195 °C

Method:

calculated [X]; measured []; ? []

No Data

GLP:

Yes [] No [X] ? []

Reliability:

[2] Valid with restrictions

Remarks:

None

Reference:

Dixie Chemical Co., Inc., MSDS (8/13/98)

D. PARTITION COEFFICIENT log₁₀Pow

Log₁₀Pow:

0.02

Temperature:

No Data calculated [X]; measured []; ? []

Method:

Yes []; No []; ? [X]

GLP: Reliability:

[3] Not valid

Remarks:

None

Reference:

EUCLID Data Sheet, 1994; Hansch, L. Berechnung mit dem MedChem-Programm, Version 1989

(POMONA89)

E. WATER SOLUBILITY

(a)

Value:

10 g/l

Temperature:

20 °C

Description:

Miscible[]; Of very high solubility [];

Of high solubility []; Soluble []; Slightly soluble [X];

Of low solubility []; Of very low solubility []; Not soluble []

Method:

No Data

GLP:

Yes [] No [X] ? []

Reliability:

[3] Not valid

Remarks:

Slowly hydrolyzes to diacid in water.

Reference:

EUCLID Data Sheet, 1994; Huels, A.G., Sicherheitsdatenblatt, 10/1/93

(b)

Value:

No Data

Temperature:

No Data

Description:

Miscible[]; Of very high solubility [];

Of high solubility []; Soluble []; Slightly soluble [];

Of low solubility []; Of very low solubility []; Not soluble [X]

Method:

No Data

GLP:

Yes [] No [X] ? []

Reliability:

[3] Not valid

Remarks:

Slowly hydrolyzes to diacid in water.

Reference:

Dixie Chemical Co., Inc., MSDS (8/13/98)

(c)

Value:

No Data

Temperature:

No Data

Description:

Miscible[]; Of very high solubility [];

Of high solubility []; Soluble []; Slightly soluble [X];

Of low solubility []; Of very low solubility []; Not soluble []

Method:

No Data

GLP:

Yes [] No [] ? [X]

Reliability:

[3] Not valid

Remarks:

Slightly soluble with hydrolysis.

Reference:

Lonza Inc./Lonza Spa, MSDS 4445 THPA (3/14/95)

F. pH Value, pKa Value

(a)

pH Value:

2.1

Concentration:

1 g/l 20 °C

Temperature: Method:

No Data

GLP:

Yes [] No [] ? [X]

PKa Value:

No Data

Reliability:

[3] Not valid No Data

Remarks: Reference:

Lonza Inc./Lonza Spa, MSDS 4445 THPA (3/14/95)

F. pH Value, pKa Value (continued)

(b)

pH Value:

2.1

Concentration:

10 g/l No Data

Temperature: Method:

No Data

GLP:

Yes [] No [X] ? []

PKa Value: Reliability: No Data
[3] Not valid

Remarks:

No Data

Reference:

EUCLID Data Sheet, 1994; Huels, A.G., Sicherheitsdatenblatt, 10/1/93

3. ENVIRONMENTAL FATE AND PATHWAYS

A. PHOTODEGRADATION

No Data

B. STABILITY IN WATER

Remarks: Slowly hydrolyzes to diacid.

C. BIODEGRADATION

(a)

Type:

Aerobic [X]; Anerobic []

Innoculum:

Activated sludge

Concentration:

100 mg/L (test substance)

Medium:

No Data 0.0%

Degradation:

No Data

Kinetics: Method:

OECD Guideline 303A

Test Substance:

Tetrahydrophthalic anhydride (Purity unknown)

Results:

Zero percent biodegradation as measured by BOD.

Test Conditions:

Three replicate tests were conducted. Concentration of the test substance was 100 mg/L. The activated sludge concentration was 30 mg/L. The volume of the test solution was 300 ml. A

constant temperature of 25 °C was maintained for 28 days.

GLP:

Yes [X]; No []; ? []

Reliability:

[2] Valid with restrictions

Remarks:

Biochemical Oxygen Demand (BOD) was determined to calculate percent biodegradation.

Reference:

Report cited by the Japan Chemical Industry Ecology-Toxicology Information Center, October,

1992.

C. BIODEGRADATION (continued)

(b)

Type:

Aerobic [X]; Anerobic []

Innoculum:

Predominantly domestic sewage

Concentration:

10 mg/l related to DOC (Dissolved Organic Carbon)

Medium:

No Data

Degradation:

21% after 21 days

Kinetics:

No Data

Method:

OECD Guideline 301E, Ready Biodegradability: Modified OECD Screening Test

Test Substance:

'As prescribed by 1.1-1.4'

Results:

No Data

Test Conditions:

No Data

GLP:

Yes []; No [X]; ? []

Reliability:

[1] Valid without restrictions

Remarks:

None

Reference:

EUCLID Data Sheet, 1994; Huels-Untersuchung (unveroeffentlict), 1981

D. TRANSPORT AND DISTRIBUTION

No Data

4. ECOTOXICITY

A. ACUTE/PROLONGED TOXICITY TO FISH

Type of test:

Static

Species/strain:

Leuciscus idus, (freshwater species)

Exposure period:

48 hours

Results:

LC₅₀: 610 mg/l

Temperature:

'As prescribed by 1.1-1.4'

Method:

Bestimmung der Wirkung von Wasserinhaltsstoffen auf Fische, DIN 38412 Teil 15

Michiga.

No Data

Test Substance:
Analytical monitoring:

Yes [] No [X] ? []

Remarks:

No Data

GLP:

Yes [] No [X] ? []

Reliability:

[2] Valid with restrictions.

Reference:

EUCLID Data Sheet, 1994; Huels-Untersuchung, 1983 (unveroeffentlicht)

ACUTE TOXICITY TO AQUATIC INVERTEBRATES - DAPHNIA B.

Type of test:

No Data

Species/strain:

Daphnia magna (Crustacea)

Exposure period:

24 hours

Results:

EC₅₀: 117 mg/l

Temperature:

No Data

Method:

Daphnien-Kurzzeittest, DIN 38412 Teil 11, Bestimmung der Wirkung von Wasserinhaltsstoffen auf

Kleinkrebse

Test Substance:

'As prescribed by 1.1-1.4'

Analytical monitoring:

Yes [] No [X] ? []

Remarks:

No Data

GLP:

Yes [] No [X] ? [] [2] Valid with restrictions

Reliability: Reference:

EUCLID Data Sheet, 1994; Huels-Bericht D324, 1988 (unveroeffentlicht)

TOXICITY TO AQUATIC PLANTS - ALGAE C.

Type of test:

No Data

Species/strain:

Scenedesmus subspicatus (Algae)

Exposure period:

72 hours

Results:

EC₁₀: 45.4 mg/l; EC₅₀: 65.7 mg/l; EC₉₀: 95.2 mg/l

Temperature:

No Data

Method:

Algenwachstums-Hemmtest nach UBA (Verfahrensvorschlag Stand Februar 1984)

Test Substance: Analytical monitoring: 'As prescribed by 1.1-1.4' Yes [] No [X] ? []

Remarks:

No Data

GLP:

Yes [] No [X] ? []

Reliability:

[2] Valid with restrictions.

Reference:

EUCLID Data Sheet, 1994; Huels-Bericht, A.W., 1988 (unveroeffenlicht)

TOXICITY 5.

A.

ACUTE TOXICITY

(1) ACUTE ORAL TOXICITY

(a)

Type:

 LD_0 []; LD_{100} []; LD_{50} [X]; LDL_0 []; Other []

Species/strain:

Rat

Value:

3 g/kg

Method:

No Data

GLP:

Yes [] No [] ? [X]

Test substance:

No Data

Reliability:

[4] Not assignable

Remarks:

No specifics reported other than the lethal dose. Route of exposure was unreported.

Reference:

RTECS, 1999; Gig. Trud. Prof. Zabol. 29(12):37, 1985

(1) ACUTE ORAL TOXICITY (continued)

(b)

Type:

 LD_0 []; LD_{100} []; LD_{50} [X]; LDL_0 []; Other []

Species/strain:

Mouse 3300 mg/kg

Value: Method:

No Data

GLP:

Yes [] No [] ? [X]

Test substance:

No Data

Remarks:

No specifics reported other than the lethal dose. Route of exposure was unreported.

Reliability:

[4] Not assignable

Reference:

RTECS, 1999; Gig. Trud. Prof. Zabol. 29(12):37, 1985

(c)

Type:

 LD_{0} []; LD_{100} []; LD $_{50}$ [X]; LDL_{0} []; Other []

Species/strain:

Guinea Pig

Value: Method: 3500 mg/kg No Data

GLP:

Yes [] No [] ? [X]

Test substance:

No Data

Remarks:

No specifics reported other than the lethal dose. Route of exposure was unreported.

Reliability:

[3] Not valid

Reference:

RTECS, 1999; Gig. Trud. Prof. Zabol 29(12):37, 1985

(d)

Type:

 LD_0 []; LD_{100} []; LD $_{50}$ [X]; LDL_0 []; Other []

Species/strain:

Rat

Value:

5410 mg/kg (4590-6380 mg/kg)

Method:

No Data

GLP:

Yes [] No [X] ? []

Test substance:

No Data

Remarks:

No details reported.

Reliability:

[4] Not assignable

Reference:

EUCLID Data Sheet, 1994; Marhold, J.V. Institut Prov Vychova Vedoucin Pracovniku Chemikeho

Prymyelo Praha, p. 140, 1972

(2) ACUTE INHALATION TOXICITY

No Data

(3) ACUTE DERMAL TOXICITY

No Data

B. REPEATED DOSE TOXICITY (General)

No Data

GENETIC TOXICITY IN VITRO

(1) BACTERIAL

Type:

Bacterial reverse mutation assay (Ames test)

Species/strain:

Samonella typhimurium (Strains TA 98, TA 100, TA 1535, TA 1537, and TA 1538)

Test System:

Standard plate method

Concentration:

 $1000 \mu g$ / plate (maximum concentration)

Metabolic Activation:

With [X]; Without [X]

Results:

Negative

Cytotoxic Concentration: No Data Precipitation:

No Data

Genotoxic Effects:

Negative with and without metabolic activation.

Method:

Standard Ames test as cited in Mutation Research 31:347-364, 1975.

GLP:

Yes [] No [X] ? []

Test Substance:

'As prescribed by 1.1-1.4' [2] Valid with restrictions

Reliability: Remarks:

Reference:

EUCLID Data Sheet, 1994; Huels Report No. 7924, 1979 (unpublished)

(2) NON-BACTERIAL IN VITRO TEST (CHROMOSOME ABERRATION)

No Data

REPRODUCTIVE TOXICITY D.

No Data

DEVELOPMENTAL TOXICITY E.

No Data

TOXICOLOGICAL INFORMATION CHARACTERISTIC FOR CYCLIC ANHYDRIDE CATEGORY 6.

A. CORROSIVENESS/IRRITATION

(1) SKIN IRRITATION/CORROSION

(a)

Type:

Dermal Irritation/Corrosivity

Species/strain:

Rabbit

Results:

Highly corrosive []; Corrosive []; Highly Irritating [];

Irritating []; Moderate irritating []; Slightly irritating [X]; Not irritating []

Classification:

Highly corrosive (causes severe burns) [];

Corrosive (caused burns) []; Irritating [X]; Not Irritating []

Method:

Draize test

GLP:

Yes [] No [] ? [X]

Test Substance:

No Data

Reliability:

[3] Not valid

Remarks:

500 mg was applied over a 24 hour time period.

Reference:

RTECS, 1999; Prehled Prumyslove Toxikologie, Organicke Latky, Masrhold, J., pg. 322, 1986.

(1) SKIN IRRITATION/CORROSION (continued)

(b)

Type:

Dermal Irritation/Corrosivity

Species/strain:

Rabbit

Results:

Highly corrosive []; Corrosive []; Highly Irritating [];

Irritating []; Moderate irritating []; Slightly irritating []; Not irritating [X]

Classification:

Highly corrosive (causes severe burns) [];

Corrosive (caused burns) []; Irritating []; Not Irritating [X]

Method:

Draize test.

GLP:

Yes [] No [X] ? []

Test Substance: Reliability:

'As prescribed by 1.1-1.4' [2] Valid with restrictions

Remarks:

Irritation index: 0, 6/8

Redness: x=0,44 (EEC Annex VI)

Edema: x=0

Reference:

EUCLID Data Sheet, 1994; Huels Report No. 1271, 1988 (unpublished)

(2) EYE IRRITATION/CORROSION

(a)

Type:

Acute Eye Irritation/Corrosion

Species/strain:

Results:

Highly corrosive []; Corrosive [X]; Highly Irritating [];

Irritating []; Moderate irritating []; Slightly irritating []; Not irritating []

Classification:

Irritating []; Not Irritating []; Risk of serious damage to eyes [X] OECD Guideline 405, Acute Eye Irritation/Corrosion, 1981

Method: GLP:

Yes [] No [X] ? []

Test Substance:

No Data

Reliability:

[2] Valid with restrictions

Remarks:

No scores were calculated since only one animal used in the test. The test was stopped after

one hour due to the possible risk of irreversible effects.

Reference:

EUCLID Data Sheet, 1994; Huels Report No. 1272, 1988 (unpublished)

(b)

Type:

Draize

Species/strain:

Rabbit

Results:

Highly corrosive []; Corrosive []; Highly Irritating [];

Irritating []; Moderate irritating [X]; Slightly irritating []; Not irritating []

Classification:

Irritating [X]; Not Irritating []; Risk of serious damage to eyes []

Method:

Draize test

GLP:

Yes [] No [] ? [X]

Test Substance:

No Data [3] Not valid

Reliability: Remarks:

Reference:

Application of 20mg produced moderate irritation at 24 hours. RTECS, 1999; Prehled Prumyslove Toxikologie; Organicke Latky, Marhold, J., pg. 322, 1986 (1) SKIN IRRITATION/CORROSION (continued)
(b)

Type:

Dermal Irritation/Corrosivity

Species/strain:

Rabbit

Results:

Highly corrosive []; Corrosive []; Highly Irritating [];

Irritating []; Moderate irritating []; Slightly irritating []; Not irritating [X]

Classification:

Highly corrosive (causes severe burns) [];

Corrosive (caused burns) []; Irritating []; Not Irritating [X]

Method:

Draize test.

GLP:

Yes [] No [X] ? []

Test Substance: Reliability:

'As prescribed by 1.1-1.4' [2] Valid with restrictions

Remarks:

Irritation index: 0, 6/8 Redness: x=0,44 (EEC Annex VI)

Edema: x=0

Reference:

EUCLID Data Sheet, 1994; Huels Report No. 1271, 1988 (unpublished)

(2) EYE IRRITATION/CORROSION

(a)

Type:

Acute Eye Irritation/Corrosion

Species/strain:

Results:

Highly corrosive []; Corrosive [X]; Highly Irritating [];

Irritating []; Moderate irritating []; Slightly irritating []; Not irritating []

Classification:

Irritating []; Not Irritating []; Risk of serious damage to eyes [X]

Method:

OECD Guideline 405, Acute Eye Irritation/Corrosion, 1981

GLP:

Yes [] No [X] ? []

Test Substance:

No Data

Reliability:

[2] Valid with restrictions

Remarks:

No scores were calculated since only one animal used in the test. The test was stopped after

one hour due to the possible risk of irreversible effects.

Reference:

EUCLID Data Sheet, 1994; Huels Report No. 1272, 1988 (unpublished)

(b)

Type:

Draize

Species/strain:

Rabbit

Results:

Highly corrosive []; Corrosive []; Highly Irritating []; Irritating []; Moderate irritating [X]; Slightly irritating []; Not irritating []

Classification:

Irritating [X]; Not Irritating []; Risk of serious damage to eyes []

Method:

Draize test

GLP:

Yes [] No [] ? [X]

Test Substance:

No Data

Reliability:

[3] Not valid

Remarks:

Application of 20mg produced moderate irritation at 24 hours.

Reference:

RTECS, 1999; Prehled Prumyslove Toxikologie; Organicke Latky, Marhold, J., pg. 322, 1986

SKIN SENSITIZATION В.

Type:

Guinea Pig Maximization Test

Species/stain:

Guinea Pig

Results:

Sensitizing [X]; Not Sensitizing []; ambiguous []

Classification:

Sensitizing [X]; Not Sensitizing []

Method:

OECD Guideline 406 Skin Sensitization, 1981

GLP:

Yes [] No [X] ? []

Test Substance:

'As prescribed by 1.1-1.4' [2] Valid with restrictions.

Reliability: Remarks:

Seventeen (17) of the 20 guinea pigs showed a positive response.

Reference:

EUCLID Data Sheet, 1994; Huels Report No. 1218, 1988 (unpublished)

RESPIRATORY SENSITIZATION

Note: Organic acid anhydrides in general are low molecular weight, reactive molecules that have been associated with mucosal irritation, skin and respiratory sensitization, severe eye irritation and mild to moderate skin irritation. Some of these compounds are corrosive to the eyes. Sensitization has been noted in various studies on both humans and animals; however, no studies were located for NMA. Symptoms of over-exposure include rhinitis, conjunctivitis and asthma-like effects. Specific serum IgE and IgG antibodies to a fairly large number of anhydrides have been found in exposed workers.

References: Grammer, et. al, 1994 and 1995 (HHPA); Kanerva, et al., 1997 and 1997; Welinder, 1991 (MHHPA) Welinder, et al., 1990 and 1994 (MTHPA); Buffalo Color Corporation, 1995 (NMA)

Method:

Guinea pigs were immunized intradermally with a single dose of 0.3 M solution of THPA and other anhydrides. Specific IgE and IgG antibodies specific for guinea-pig serum albumin conjugates of

the anhydrides were determined by passive cutaneous anaphylaxis (PCA) tests and enzyme-linked

immunoabsorbant assay (ELISA).

Results:

Specific IgG levels were increased in only three (3) of nine (9) animals immunized with THPA.

Less than 10% of the animals in the THPA immunized group were positive for specific IgE

antibodies.

Reliability:

[2] Valid with restrictions

Remarks:

Specific IgG, totals were analyzed by ELISA assay. PCA was used for analysis of IgE. It should be

noted that the PCA assay has low sensitivity and may not detect low titer levels of antibody. Product

purity was \geq 97%. The primary purpose of this article was to investigate structure activity

relationships of organic acid anhydrides. The authors concluded that substitution of a hydrogen atom for a methyl group enhanced antibody formation. This substitution appeared to be the most

marked general effect of chemical structure on immunogenicity.

Reference:

Welinder, H., et al., 1995

7. REFERENCES

- Dixie Chemical Co., Inc., Material Safety Data Sheet Tetrahydrophthalic Anhydride, 8/13/98
 - EUCLID Data Sheet (Lonza Inc.), Creation Date: 09/06/93; Revision Date: 01/11/94
 - Grammer, L. C. et al., Hemorrhagic Rhinitis An Immunologic Disease due to Hexahydrophthalic Anhydride, Chest 104(6):1792-1794, 1993
- Grammer, L. C. et al., Risk Factors for Immunologically Mediated Respiratory Disease from Hexahydrophthalic Anhydride, J. Occup. Med. 36(6):642-646, 1994
- Japan Chemical Industry Ecology-Toxicology Information Center, Cited Report Summary, October, 1992
 - Kanerva, L. et al., Delayed and Immediate Allergy caused by Methylhexahydrophthalic Anhydride, Contact Dermatitis 36(1):34-38, 1997
 - Kanerva, L. et al., Airborne Allergic Contact Urticaria from Methylhexahydrophthalic Anhydride and Hexahydrophthalic Anhydride Contact Dermatitis 41(6):339-341, 1999
 - Klimisch, H. J., et al., A systematic Approach for Evaluating the Quality of Experimental and Ecotoxicological Data, Regulatory Toxicol. & Pharmacol. 25:1-5, 1997.
 - Lonza Inc./Lonza Spa, Material Safety Data Sheet 4445 Tetrahydrophthalic Anhydride, 3/14/95
 - RTECS Database, 1999
 - Welinder, H., et al., Specific Antibodies to Methyltetahydrophthalic Anhydride in Exposed Workers, Clin. Exp. Allergy 20(6):639-646, 1990.
 - Welinder, H. and Nielsen, J., Immunologic Tests of Specific Antibodies to Organic Acid Anhydrides, Allergy 46:601-609, 1991
- Welinder, H. E. et al., Exposure-Response Relationships in the Formation of Specific Antibodies to Hexahydrophthalic Anhydride in Exposed Workers, Scand. J. Work Environ. Health 20(6):459-465, 1994

HIGH PRODUCTION VOLUME (HPV) CHALLENGE PROGRAM

APPENDIX 3

ROBUST SUMMARIES

FOR

METHYLHEXAHYDROPHTHALIC ANHYDRIDE (25550-51-0)

Submitted to the U.S. EPA

 $\mathbf{B}\mathbf{y}$

The Industrial Health Foundation, Inc. Cyclic Anhydride Committee

Consortium Registration Number:

March, 2001

CONTENTS

Page

	1.	SUBSTANCE INFORMATION	. 1
		PHYSICAL-CHEMICAL DATA	2
	2.	A. MELTING POINT	2
		B. BOILING POINT	2
		C. VAPOR PRESSURE	2
		D. PARTITION COEFFICIENT n-OCTANOL/WATER	3
		E. WATER SOLUBILITY	3
		F. pH VALUE, pKa VALUE	4
	3.	ENVIRONMENTAL FATE AND PATHWAYS	4
	٥.	A PHOTODEGRADATION	4
		R STARII ITY IN WATER	4
		C DIODECD A DATION	4
		D. TRANSPORT AND DISTRIBUTION	4
			5
•	4.	ECOTOXICITYA. ACUTE/PROLONGED TOXICITY TO FISH	
		A. ACUTE/PROLONGED TOXICITY TO FISH B. ACUTE TOXICITY TO AQUATIC INVERTEBRATES - DAPHNIA	5
		B. ACUTE TOXICITY TO AQUATIC INVERTEBRATES - DAITING	5
•		C. TOXICITY TO AQUATIC PLANTS - ALGAE	-
	5.	TOXICITY	5
	٥.	A ACTITE TOYICITY	5
~		(1) ACUTE ORAL TOXICITY	3
		(1) ACUTE INHALATION TOXICITY	5
		(3) ACUTE DERMAL TOXICITY	J
29		B. REPEATED DOSE TOXICITY (GENERAL)	О
		C GENETIC TOYICITY IN VITRO	U
		(1) BACTERIAL TEST	6
		(2) NON-BACTERIAL IN VITRO TEST	6
Win.		D. REPRODUCTIVE TOXICITY	6
		E. DEVELOPMENTAL TOXICITY	6
m),	6.	TOXICOLOGICAL INFORMATION CHARACTERISTIC FOR CYCLIC ANHYDRIDE CATEGORY	6 6
		A CORPOSIVENESS/IRRITATION	U
		(1) SKIN IRRITATION/CORROSION	. 0
ara,		(2) EVE IDDITATION/CORROSION	·
		D SKIN SENSITIZATION	. 0
		C. RESPIRATORY SENSITIZATION	. 6
pen .		DEFERENCES	. 8
	7	DEEDENCES	_

1 SUBSTANCE INFORMATION

CAS-Number

25550-51-0

Name

Methyl Hexahydrophthalic Anhydride

Name

1,3-Isobenzofurandione, Hexahydro-5-methyl-

EINECS-Number

247-094-1/243-072-0

Molecular Formula

 $C_9H_{12}O_3$

Structural Formula

D1-Me

Other Chemical

Identity/Synonyms

Hexahydromethyl-1,3-Isobenzofurandione; MHHPA; Hexahydromethyl-1,2-Cyclohexane-

dicarboxylic anhydride; 5-methyl hexahydro-1,3-isobenzofurandione; Hexahydro-4-Methylphthalic

anhydride

Molecular Weight

168

Type of Substance

 $element \ [\]; inorganic \ [\]; natural \ substance \ [\]; organic \ [X]; organometallic \ [\]; petroleum$

product []

Physical State (at 20°C and 1.013 hPa)

gaseous []; liquid []; solid []

Purity

99% weight/weight (approx.) - Lonza Group

>99% weight/weight (approx.) - Dixie Chemical Company

SYNONYMS

IMPURITIES

No Data

2. PHYSICAL-CHEMICAL DATA

A. MELTING POINT

Value:

-30 °C

Decomposition:

No Data

Sublimation:

No Data

Method:

No Data

GLP:

Yes [] No [] ? [X]

Reliability:

[2] Valid with restrictions

Remarks:

None

Reference:

Lonza Inc./Lonza Spa, MHHPA MSDS, 3/31/95

B. BOILING POINT

(a)

Value:

290 °C

Pressure:

No Data

Decomposition:

No Data

Method:

No Data

GLP:

Yes [] No [] ? [X]

Reliability:

[4] Not assignable

Remarks:

None

Reference:

Lonza Inc./Lonza Spa, MHHPA MSDS, 3/31/95

(b)

Value:

145 °C

Pressure:

3 mm Hg

Decomposition:

No Data

Method:

No Data

GLP: Reliability:

Yes [] No [X] ? [] [4] Not assignable

Remarks:

None

Reference:

Dixie Chemical Company, Inc., MSDS (5/6/99)

C. VAPOUR PRESSURE

(a)

Value:

5.00 mm Hg

Temperature:

137 °C

Method:

calculated []; measured []; ? [X]

No Data

GLP:

Yes [] No [] ? [X]

Reliability:

[2] Valid with restrictions None

Remarks: Reference:

Lonza Inc./Lonza Spa, MHHPA MSDS, 3/31/95

VAPOUR PRESSURE (continued) C.

(b)

Value:

3.00 mm Hg

Temperature:

145 °C

Method:

calculated []; measured [X]; ? []

No Data

GLP:

Yes [] No [X] ? []

Reliability:

[2] Valid with restrictions

Remarks:

None

Reference:

Dixie Chemical Company, Inc., MSDS (5/6/99)

PARTITION COEFFICIENT log10Pow D.

No Data

WATER SOLUBILITY E.

(a)

Value:

<0.1% - Hydrolyzes

Temperature:

No Data

Description:

Miscible[]; Of very high solubility [];

Of high solubility []; Soluble []; Slightly soluble []; Of low solubility []; Of very low solubility []; Not soluble [X]

Method:

No Data

GLP:

Yes [] No [] ? [X] [4] Not assignable

Reliability: Remarks:

Hydrolyzes in water.

Reference:

Lonza Inc./Lonza Spa, MHHPA MSDS, 3/31/95

(b)

Value:

No Data

Temperature:

No Data

Description:

Miscible[]; Of very high solubility [];

Of high solubility []; Soluble []; Slightly soluble [];

Of low solubility []; Of very low solubility []; Not soluble [X]

Method:

No Data

GLP:

Yes [] No [X] ? [] [4] Not assignable

Reliability:

Reacts slowly with water.

Remarks:

Reference:

Dixie Chemical Company, Inc., MSDS (5/6/99)

(c)

Value:

36 g/L

Temperature:

20 °C

Description:

Miscible[]; Of very high solubility [];

Of high solubility []; Soluble []; Slightly soluble [];

Of low solubility []; Of very low solubility []; Not soluble []

Method:

No Data

GLP:

Yes [] No [X] ? []

Reliability:

[4] Not assignable

Remarks: Reference: None

Reference:

None HEDSET Data Sheet, 1995

3

F. pH Value, pKa Value

No Data

3. ENVIRONMENTAL FATE AND PATHWAYS

A. PHOTODEGRADATION

No Data

B. STABILITY IN WATER

Slowly hydrolyzes to diacid.

C. BIODEGRADATION

(a)

Type:

Aerobic [X]; Anaerobic []

Inoculum:

Activated Sludge

Concentration:

100 mg/L (test substance)

Medium:

No Data

Degradation:

0.0 %

Kinetics:

No Data

Method:

OECD Guideline 303A

Test Substance:

Methyhexahydrophthalic anhydride (Purity unknown)

Results:

Zero percent biodegradation as measured by BOD. Three replicate tests were run. MHHPA

was hydrolyzed to corresponding acid.

Test Conditions:

Test substance concentration was 100 mg/L. Activated sludge concentration was 30 mg/L with

a test solution volume of 300 ml. Temperature was maintained at 25 °C and cultivation

duration was 28 days.

GLP:

Yes [X] No [] ? []

Reliability:

[2] Valid with restrictions

Remarks:

None

Reference:

Report summary cited by the Japan Chemical Industry Ecology-Toxicology Information

Center, October, 1992.

D. TRANSPORT AND DISTRIBUTION

No Data

ECOTOXICITY

ACUTE/PROLONGED TOXICITY TO FISH

Type of Test:

Semi-static (test water renewed at 24 hours)

Species/strain:

Oryzias latipes (Orange-red killifish)

Exposure period:

48 Hours

Results:

 LC_{50} : = 500 mg/L (48 hour)

Temperature:

No Data

Method:

Not given Methylhexahydrophthalic anhydride (unknown purity)

Test Substance: Analytical Monitoring:

Yes [X]; No []; No Data []

Remarks:

No other information was given.

GLP:

Yes [] No [] ? [X]

Reliability:

[2] Valid with restrictions

Reference:

Report summary cited by the Japan Chemical Industry Ecology-Toxicology Information

Center, October, 1992.

ACUTE TOXICITY TO AQUATIC INVERTEBRATES - DAPHNIA В.

No Data

TOXICITY TO AQUATIC PLANTS - ALGAE C.

No Data

TOXICITY 5.

ACUTE TOXICITY

(1) ACUTE ORAL TOXICITY

Type:

 LD_0 []; LD_{100} []; LD_{50} [X]; LDL_0 []; Other []

Species/strain:

Rats

Value:

3300 mg/kg

Method:

Oral ingestion.

GLP:

Yes [] No [] ? [X]

Test substance:

No Data

Remarks:

No other data was supplied.

Reliability:

[2] Valid with restrictions

Reference:

Milliken Chemical Company, Specialty Intermediates Pamphlet AN-482-06 (9/96);

Milliken Chemical Company, Unpublished Report, cited in MSDS No. 790773, January 17,2000.

(2) ACUTE INHALATION TOXICITY

No Data

(3) ACUTE DERMAL TOXICITY

No Data

В.	REPEATED	DOSE TOXICITY	(General)
----	----------	---------------	-----------

No Data

C. GENETIC TOXICITY IN VITRO

(1) BACTERIAL

No Data

(2) NON-BACTERIAL IN VITRO TEST (CHROMOSOME ABERRATION)

No Data

D. REPRODUCTIVE TOXICITY

No Data

E. DEVELOPMENTAL TOXICITY

No Data

6. TOXICOLOGICAL INFORMATION CHARACTERISTIC FOR CYCLIC ANHYDRIDE CATEGORY

A. CORROSIVENESS/IRRITATION

(1) SKIN IRRITATION/CORROSION

No Data

(2) EYE IRRITATION/CORROSION

Specific studies were unavailable; however, in accordance with Directive 67/548/EEC, appropriate risk (R) phrases for MHHPA include: "Risk of Serious Damage to the Eyes".

B. SKIN SENSITIZATION

Specific studies were unavailable; however, in accordance with Directive 67/548/EEC, appropriate risk ® phrases for MHHPA include: "May cause sensitization by inhalation and skin contact."

C. RESPIRATORY SENSITIZATION

Organic acid anhydrides in general are low molecular weight, reactive molecules that have been associated with mucosal irritation, skin and respiratory sensitization, severe eye irritation and mild to moderate skin irritation. Some of these compounds are corrosive to the eyes. Sensitization has been noted in various studies on both humans and animals; however, no studies were found for NMA. Symptoms of over-exposure include rhinitis, conjunctivitis and asthma-like effects. Specific serum IgE and IgG antibodies to a fairly large number of anhydrides have been found in exposed workers.

References: Grammer, et. al, 1994 and 1995 (HHPA); Kanerva, et al., 1997 and 1997; Welinder, 1991 (MHHPA) Welinder, et al., 1990 and 1994 (MTHPA); Buffalo Color Corporation, 1995 (NMA)

C. RESPIRATORY SENSITIZATION (continued)

(a)

Method:

Case report

Results:

This article includes a case report of a woman who worked as a cleaner in a condenser factory. The condensers were filled with epoxy resin, a hardener, an accelerator and pigment. Approximately seven months after MHHPA was brought into use as the hardener, the worker came down with rhinitis and coughing. RASTs and prick tests for MHHPA-HAS(Human Serum Albumin

Conjugates) were positive. Bronchial challenge with MHHPA was negative but the intense rhinitis evoked by the test confirmed occupational IgE mediated allergic rhinitis due to MHHPA. Positive prick test reactions indicated cross-reactivity between MHHPA-HAS and PA, maleic anhydride,

trimellitic anhydride and MTHPA. RASTs to PA and MTHPA were also positive.

Reliability:

Remarks:

Estimation or measurement of ambient air concentrations of MHHPA in the workplace were not

given although occasional skin contact was noted.

Reference:

Kanerva, L., et al., 1991

(b)

Method:

Guinea pigs were immunized intradermally with a single dose of 0.3 M solution of MHHPA and other anhydrides. Specific IgE and IgG antibodies specific for guinea-pig serum albumin conjugates

of the anhydrides were determined by passive cutaneous anaphylaxis (PCA) tests and enzyme-

linked immunoabsorbant assay (ELISA).

Results:

Specific IgG levels were increased in all animals immunized with MHHPA and specific IgE

antibodies were positive.

Reliability:

Remarks:

Product purity was \geq 97%. Specific IgG, totals were analyzed by ELISA assay. PCA was used for analysis of IgE. The primary purpose of this article was to investigate structure activity relationships of organic acid anhydrides. The authors concluded that substitution of a hydrogen atom for a methyl group enhanced antibody formation. This substitution appeared to be the most marked general

effect of chemical structure on immunogenicity.

Reference:

Welinder, H., et al., 1995

7. REFERENCES

- Dixie Chemical Company, Inc., Material Safety Data Sheet for Methyl Hexahydrophthalic Anhydride (5/6/99)
- Grammer, L. C. et al., Hemorrhagic Rhinitis An Immunologic Disease due to Hexahydrophthalic Anhydride, Chest 104(6):1792-1794, 1993
- Grammer, L. C. et al., Risk Factors for Immunologically Mediated Respiratory Disease from Hexahydrophthalic Anhydride, J. Occup. Med. 36(6):642-646, 1994
- HEDSET Data Sheet, (Lonza Inc./Lonza Spa), 03/03/95.
- Japan Chemical Industry Ecology-Toxicology Information Center, Cited Report Summary, October, 1992
 - Kanerva, L., et al., Allergic Contact Dermatitis from Non-Diglycidyl-Ether-of-Bisphenol-A Epoxy Resins, Contact Dermatitis 24: 293-300, 1991
 - Kanerva, L. et al., Delayed and Immediate Allergy caused by Methylhexahydrophthalic Anhydride, Contact Dermatitis 36(1):34-38, 1997
 - Kanerva, L. et al., Airborne Allergic Contact Urticaria from Methylhexahydrophthalic Anhydride and Hexahydrophthalic Anhydride Contact Dermatitis 41(6):339-341, 1999
 - Klimisch, H. J., et al., A systematic Approach for Evaluating the Quality of Experimental and Ecotoxicological Data, Regulatory Toxicol. & Pharmacol. 25:1-5, 1997.
 - Lonza Group, Material Safety Data Sheet for Methyl Hexahydrophthalic Anhydride, 3/31/95
 - Savolainen, H., and P. Pfaeffli. Acta Pharmacol. Toxicol. (Copenhagen) 59(3): 209-213, 1986
 - Welinder, H., Specific Antibodies to Methyltetrahydrophthalic Anhydride in Exposed Workers, Clin. Exp. Allergy 20(6):639-646, 1990
 - Welinder, H. and Nielsen, J., Immunologic Tests of Specific Antibodies to Organic Acid Anhydrides, Allergy 46:601-609, 1991
- Welinder, H. E. et al., Exposure-Response Relationships in the Formation of Specific Antibodies to Hexahydrophthalic Anhydride in Exposed Workers, Scand. J. Work Environ. Health 20(6):459-465, 1994
 - Welinder, H., et al., Structure-Activity Relationships of Organic Acid Anhydrides as Antigens in an Animal Model, Toxicology 103:127-136, 1995

HIGH PRODUCTION VOLUME (HPV) CHALLENGE PROGRAM

APPENDIX 4

ROBUST SUMMARIES

FOR

METHYLTETRAHYDROPHTHALIC ANHYDRIDE (34090-76-1)

Submitted to the U.S. EPA

By

The Industrial Health Foundation, Inc. Cyclic Anhydride Committee

Consortium Registration Number:

March, 2001

1. SUBSTANCE INFORMATION

CAS-Number

34090-76-1

Name

Methyltetrahydrophthalic Anhydride

Name

Tetrahyro-5-methyl-1,3-Isobenzofurandione

EINECS-Number

251-823-9

Molecular Formula

 $C_9H_{10}O_3$

Structural Formula

Other Chemical

Identity/Synonyms

 $4-Methyl tetra hydrophthalic\ Anhydride;\ Tetra hydo-4-methyl phthalic\ anhydride;\ MTHPA$

Molecular Weight

166

Type of Substance

element []; inorganic []; natural substance []; organic [X]; organometallic []; petroleum

product []

Physical State (at 20°C and 1.013 hPa)

gaseous []; liquid [X]; solid []

Purity

No Data

SYNONYMS

Methyltetrahydrophthalic anhydride

IMPURITIES

No Data

2. PHYSICAL-CHEMICAL DATA

A. MELTING POINT

No Data

B. BOILING POINT

(a)

Value:

> 585 °F

Pressure:

No Data No Data

Decomposition: Method:

ASTM D-86

GLP:

Yes [] No [] ? [X]

Reliability:

[2] Valid with restrictions

Remarks:

None

Reference:

Lindau Chemical, MSDS for Lindride 12 (5/1/95)

(b)

Value:

283 °C

Pressure:

760 mm Hg

Decomposition:

No Data

Method:

No Data

GLP:

Yes [] No [X] ? []

Reliability:

[2] Valid with restrictions

Remarks:

None

Reference:

Dixie Chemical Company, Inc., MSDS for ECA 100 (1/3/00)

C. VAPOUR PRESSURE

(a)

Value:

0.002 mm Hg

Temperature:

25 °C

Method:

calculated [X]; measured []; ? []

GLP:

Yes [] No [X] ? []

Reliability:

[2] Valid with restrictions

Remarks:

None

Reference:

Dixie Chemical Company, Inc., MSDS for ECA 100 (1/3/00)

(b)

Value:

Negligible

Temperature:

16 ° C (60 ° F)

Method:

No Data

GLP:

Yes [] No [] ? [X]

Reliability:

[2] Valid with restrictions

Remarks:

None

Reference:

Lindau Chemical, MSDS for Lindride 12 (5/1/95)

(c)

Value:

Negligible

Temperature:

60 °/100 ° F

Method:

No Data

GLP:

Yes [] No [] ? [X]

Reliability:

[2] Valid with restrictions

Remarks:

None

Reference:

Lindau Chemical, MSDS for Lindride 12 (5/1/95)

D. PARTITION COEFFICIENT log₁₀Pow

No Data

E. WATER SOLUBILITY

Value:

No Data

Temperature:

No Data

Description:

Miscible[]; Of very high solubility [];

Of high solubility []; Soluble []; Slightly soluble [];

Of low solubility []; Of very low solubility []; Not soluble [X]

Method:

No Data

GLP:

Yes [] No [] ? [X]

Remarks:

Slowly hydrolyzes to diacid in water.

Reference:

Lindau Chemical, MSDS for Lindride 12 (5/1/95)

F. pH Value, pKa Value

No Data

3. ENVIRONMENTAL FATE AND PATHWAYS

A. PHOTODEGRADATION

No Data

B. STABILITY IN WATER

Hydrolyzes to diacid.

C. BIODEGRADATION

No Data

D. TRANSPORT AND DISTRIBUTION

No Data

4. ECOTOXICITY

A. ACUTE/PROLONGED TOXICITY TO FISH

Type of Test:

Semi-static

Species/strain:

Oryzias latipes (Ricefish)

Exposure period:

96 Hours

Results:

LC₅₀: > 100 mg/L (96 hour)

Temperature:

No Data

Method:

"OECD Guidelines"

Test Substance:

Methyltetrahydrophthalic anhydride (unknown purity)

Analytical Monitoring:

Yes []; No []; No Data [X]

Remarks:

A semi-static system was used with renewal of water every 24 hours. No additional informa-

tion available.

GLP:

Yes [X] No [] ? []

Reliability:

[2] Valid with restrictions

Reference:

Office of Environmental Risk Assessment, Ministry of Environment, 1997.

B. ACUTE TOXICITY TO AQUATIC INVERTEBRATES - DAPHNIA

Type of Test:

Static

Species/strain:

Daphnia magna

Exposure period:

48 Hours

Results:

 EC_{50} = 130 mg/L (48 hours)

Temperature:

No Data

Method:

"OECD Guidelines"

Test Substance:

Methyltetrahydrophthalic anhydride (unknown purity)

Analytical Monitoring:

Yes []; No []; No Data [X]

Remarks:

No additional information available. Yes [X] No [] ? []

GLP:

[2] Valid with restrictions

Reliability: Reference:

Office of Environmental Risk Assement, Ministry of Environment, Japan, 1997.

C. TOXICITY TO AQUATIC PLANTS - ALGAE

Type of Test:

Static - Growth inhibition

Species/strain:

Selanastrum capricorn (green algae)

Exposure period:

72 Hours

Results:

 $EC_{so} = 79 \text{ mg/L} (72 \text{ hours})$

NOEC= 32 mg/L (72 hours)

Temperature:

No Data

Method:

"OECD Guidelines"

Test Substance:

Methyltetrahydrophthalic anhydride (unknown purity)

Analytical Monitoring:

Yes []; No []; No Data [X]

Remarks:

None

GLP:

Yes [X] No []?[]

Reliability:

[2] Valid with restrictions

Reference:

Office of Environmental Risk Assessment, Ministry of Environment, Japan, 1997.

TOXICITY 5.

ACUTE TOXICITY

(1) ACUTE ORAL TOXICITY

(a)

Type:

 LD_0 []; LD_{100} []; LD_{50} [X]; LDL_0 []; Other []

Species/strain:

Crj:CD Rats

Value:

> 2000 mg/kg (for both males and females)

Method: GLP:

OECD Test Guideline 401 Yes [X] No [] ? []

Test substance:

Methyltetrahydrophthalic anhydride (99.97% purity)

Remarks:

Five (5) rats/sex were gavaged at 0, 500, 1000, or 2000 mg/kg of MTHPA in corn oil. Decreased birth weight, hypoactivity, shortness of breath and prone position were noted at 2000 mg/kg after 1 day. At necropsy, thickening, inflammation, adhesions, and squamous metaplasia of forestomach

were seen at the two highest doses. No deaths occurred at any dose.

Reliability:

[1] valid without restrictions

Reference:

Safety Assessment Laboratory, Panapharm Laboratories Co., Ltc., 1285 Kurisaki-machi, Uto-shi,

Kumamoto, 869-0, Japan, 1997.

(b)

Type:

LD₀ []; LD₁₀₀ []; LD ₅₀ [X]; LDL₀ []; Other []

Species/strain:

Sprague-Dawley Derived Rats

Value:

3.69 ml/kg (~4.46 g/kg)

Method:

Groups of five male rats (205-275 g) were orally gavaged with undiluted material at dose levels of 0.464, 1.0, 2.15, 4.64 and 10 ml/kg. Animals were clinically observed for 14 days post-dosing.

Gross autopsies were performed on all decedents and on all survivors at 14 days. This was an FHSA

method (Code of Federal Regulations, Title 16, Chapter III, 1976).

GLP:

Yes [] No [X] ? []

Test substance:

Undiluted liquid

Remarks:

The 95% confidence limits for this LD₅₀ were 2.27-5.99 ml/kg. No deaths were seen at 0.464 or 1.0 ml/kg, 1 of 5 rats died at 2.15 ml/kg, 3 of 5 died at 4.64 ml/kg and 5 of 5 died at 10 ml/kg. At doses ≥ 2.15 ml/kg, clinical signs included hyperreactivity but no depression of bodyweight. Gross

autopsy of decendents revealed gas and irritation in the intestinal tract and congestion of major organs. At 10 ml/kg, all deaths occurred within 24 hours. At other doses deaths occurred between 3

and 14 days. Gross autopsy on survivors was unremarkable.

Reliability:

[2] valid with restrictions

Reference:

Hill Top Research. Unpublished Report 78-645-21, July 25, 1978.

(c)

Type:

 LD_0 []; LD_{100} []; LD_{50} [X]; LDL_0 []; Other []

Species/strain:

Value:

2140 µl/kg (~2589 mg/kg) Range Finding Study

Method: GLP:

Yes [] No [X] ? []

Test substance:

No Data

Details not reported except for 95% confidence limit (1480-3100 ml/kg).

Remarks: Reliability:

[2] valid with restrictions

Reference:

H. F. Smyth. American Industrial Hygiene Association Journal 30:470, 1969;

Dixie Chemical Company, Inc., MSDS for ECA 100 (1/3/00)

(2) ACUTE INHALATION TOXICITY

No Data

(3) ACUTE DERMAL TOXICITY

(a)

Type:

 $\mathrm{LD_0}$ []; LD_{100} []; LD $_{50}$ [X]; $\mathrm{LDL_0}$ []; Other []

Species/strain:

Rabbit

Value:

1410 μl/kg (~1706 mg/kg)

Method:

No Data

GLP:

Yes [] No [X] ? []

Test substance:

No Data

Remarks: Reliability: Details not reported [2] valid with restrictions

Reference:

H.F. Smyth, 1969

Dixie Chemical Company, Inc., MSDS for ECA 100 (1/3/00)

(b)

Type:

 $\mathrm{LD_0}$ []; LD_{100} []; LD $_{50}$ [X]; $\mathrm{LDL_0}$ []; Other []

Species/strain:

Rat

Value:

>2000 mg/kg

Method:

Limit test; OCSE Linea Direttrice 402, 1987.

GLP:

Yes [X] No [] ? []

Test substance:

No Data

Remarks:

No details given.

Reliability:

[2] valid with restrictions

Reference:

Safephaun Laboratories Limited, U.K., 1987.

REPEATED DOSE TOXICITY (General) В.

Type:

Combined screening study to assess repeated dose toxicity, reproductive performance of male

and female rats, and developmental toxicity potential.

Species/strain:

Crj:CD (SD) rats

Sex:

Female []; Male []; Male/Female [X]; No Data []

Route of Administration:

Oral gavage

Exposure period:

Males - 49 days; Females - 14 days before mating to day 3 of lactation (51 days). Terminal

sacrifice of males occurred on day 50. Females were sacrificed on day 4 of lactation.

Frequency of treatment:

1 dose/day

Post exp. observation period:

None

Dose:

0, 30, 100, and 300 mg/kg/day in corn oil

Control group:

Yes []; No []; No Data []; Concurrent no treatment []; Concurrent vehicle [X];

Historical []

NOEL:

Males – 30 mg/kg/day; Females – 100 mg/kg/day

LOEL:

Males - 100 mg/kg/day; Females - 300 mg/kg/day

REPEATED DOSE TOXICITY (continued) В.

MTHPA had no effect on body weight or food consumption at any dose level. The only Results:

adverse clinical sign was transient salivation in the 300 mg/kg groups. At termination, hematology was unremarkable in all groups but blood chemistry determinations showed decreased total cholesterol and BUN as well as increased triglycerides in males at 300 mg/kg. Upon autopsy, mucosal thickening of the forestomach in both sexes and increased adrenal weights in males were seen at the 300 mg/kg dose level. Histopathological examination revealed squamous metaplasia of the forestomach in males at 100 mg/kg and in both sexes at 300 mg/kg. Other forestomach changes seen at the 300 mg/kg dose included submucosal granulomatous inflammation, epithelial vacuolar change, edema, cellular infiltration and erosion. Other than suggestions of chronic irritation at the site of administration, no target organ for MTHPA was evident. The NOEL was reported to be 30 mg/kg in males and 100

mg/kg in females.

OECD Guideline No. 422: Combined Repeat Dose and Reproductive/Developmental Toxicity Method:

Screening Test

Yes [X]; No []; ? [X] GLP:

Methyltetrahydrophthalic anhydride (99.97% purity) Test substance:

[1] Valid without restriction Reliability:

Report from Safety Assessment Laboratory, Panapharm Laboratories Co., Ltd., 1285 Kurisaki-Reference:

machi, Uto-shi, Kumato, 869-04, Japan, 1997.

GENETIC TOXICITY IN VITRO C.

(1) BACTERIAL

Bacterial reverse mutation assay (Ames test) Type:

Salmonella typhimurium bacteria (Strains TA 98, TA 100, TA 1535, and TA 1537)); Escherichia Species/strain:

coli bacteria (WP 2)

Pre-incubation method Test System:

62.5-2000 µg/plate for S. typhimurium without S9 activation; 156-5000 µg/plate for E coli without Concentration:

S9 activation; 313-5000 μ g/plate for S. typhimurium and E. coli with S9 activation

With [X]; Without [X] Metabolic Activation:

Non-mutagenic Results:

500 µg/plate for TA 1535; 1000 µg/plate for TA 100, TA 98, and TA 1537 without S9 activation; Cytotoxic Concentration:

2500 μg/plate for E. coli without S9 activation; 5000 μg/plate for TA 100 and TA 1537 with S9

activation

Not applicable Precipitation:

Negative in E. coli and all strains of S. typhimurium with and without metabolic (S9) activation Genotoxic Effects:

OECD Guidelines 471 and 472 Method:

Yes [X] No [] ? [] GLP:

Methyltetrahydrophthalic anhydride (99.97% purity by weight) Test substance:

Four strains of S. typhimurium (TA 98, TA 100, TA 1535, and TA 1537) and one strain of E. coli Remarks:

(WP2) were tested using a pre-incubation method. Three culture plates and two replicates were used

at each dose level in both the presence and absence of a S9 rat liver homogenate. Appropriate

positive controls were used with S9 (2AA) and without S9 (AF2, 9AA, SA) activation.

[1] Valid without restrictions. Reliability:

Hatano Research Institute Report, Food and Drug Safety Center, 729-5 Ochai, Hadano-shi, Reference:

Kanagawa, 257, Japan, 1997.

(2) NON-BACTERIAL IN VITRO TEST (chromosome aberration)

Type:

Cytogenetic assay (chromosomal aberration)

Species/strain:

Chinese Hamster Lung (CHL/IU) cells

Test System:

Chinese Hamster Lung

Concentration:

Continuous treatment without S9 activation -0, 0.075, 0.15, and 0.30 mg/ml; Short-term treatment without S9 activation -0, 0.05, 0.10 and 0.20 mg/ml; Short-term treatment with S9

activation - 0, 0.11, 0.21, and 0.43 mg/ml.

Metabolic Activation:

With [X]; Without [X]

Results:

Negative for chromosomal aberration. Equivocal for polyploidy.

Cytotoxic Concentration:

Unknown

Precipitation:

Not applicable

Genotoxic Effects:

Structural chromosomal aberrations were not induced following 24 hours of continuous treatment. Polyploidy (1.13-1.88%) was weakly induced at 0.3 mg/ml without S9 activation after 48 hours of continuous treatment and at all concentrations (0.11-0.43 mg/ml) with short

-term treatment and S9 activation.

Method:

OECD Guideline 473 Yes [X] No [] ? []

GLP: Test substance:

Methyltetrahydrophthalic anhydride (99.97% purity by weight)

Remarks:

The maximum dose tested is a concentration of the test substance that produces a 50% or greater inhibition of cell growth or mitosis. Several lower graded dose levels were also used. Two culture plates/dose level were used and S-9 was prepared from rat liver induced with

phenobarbital and 5,6-benzoflavone.

Reliability:

[1] Valid without restrictions.

Reference:

Hatano Research Institute Report, Food and Drug Safety Center, 729-5 Ochai, Hadano-shi,

Kanagawa, 257, Japan, 1997.

D. REPRODUCTIVE TOXICITY

Type:

Combined screening study to assess repeated dose toxicity, reproductive performance of male

and female rats, and developmental toxicity potential.

Species/strain:

Cri:CD (SD) rats

Sex.

Female []; Male []; Male/Female [X]; No Data []

Route of Administration:

Oral gavage

Exposure period:

Males – 49 days; Females – 14 days before mating to day 3 of lactation (51 days). Terminal

sacrifice of males occurred on day 50. Females were sacrificed on day 4 of lactation.

Frequency of treatment:

1 dose/day

Post exp. observation period:

None

Dose:

0, 30, 100, and 300 mg/kg/day in corn oil

Control group:

Yes []; No []; No Data []; Concurrent no treatment []; Concurrent vehicle [X];

Historical []

NOEL:

Males/Females - 300 mg/kg/day Males/Females - > 300 mg/kg/day

LOEL: Results:

No effects were observed on estrous cycle, numbers of corporeal lutea and implantations,

copulation index, or fertility indices. Examination at delivery and during the lactation period showed no effects on the length of gestation, litter size, live newborns, gestational, stillborn and birth indices, sex ratio, body weight of offspring at birth and at day 4 after birth, or viability index on day 4. No external anomalies were apparent. The NOEL from this screening study was greater than 300 mg/kg for male and female reproductive performance and for

developmental toxicity.

D. REPRODUCTIVE TOXICITY (continued)

Method:

OECD Guideline No. 422: Combined Repeat Dose and Reproductive/Developmental Toxicity

Screening Test

GLP:

Yes [X]; No []; ? [X]

Test substance:

Methyltetrahydrophthalic anhydride (99.97% purity)

Reliability:

[1] Valid without restriction

Reference:

Report from Safety Assessment Laboratory, Panapharm Laboratories Co., Ltd., 1285 Kurisaki-

machi, Uto-shi, Kumato, 869-04, Japan, 1997

E. DEVELOPMENTAL TOXICITY

Type:

Combined screening study to assess repeated dose toxicity, reproductive performance of male

and female rats, and developmental toxicity potential.

Species/strain:

Crj:CD (SD) rats

Sex:

Female []; Male []; Male/Female [X]; No Data []

Route of Administration:

Oral gavage

Exposure period:

Males – 49 days; Females – 14 days before mating to day 3 of lactation (51 days). Terminal

sacrifice of males occurred on day 50. Females were sacrificed on day 4 of lactation.

Frequency of treatment:

1dose/day

Post exp. observation period:

None

Dose:

0, 30, 100, and 300 mg/kg/day in corn oil

Control group:

Yes []; No []; No Data []; Concurrent no treatment []; Concurrent vehicle [X];

Historical []

NOEL:

Males/Females - 300 mg/kg/day

LOEL:

No Data

Results:

No effects were observed on estrous cycle, numbers of corporeal lutea and implantations,

copulation index, or fertility indices. Examination at delivery and during the lactation period showed no effects on the length of gestation, litter size, live newborns, gestational, stillborn and birth indices, sex ratio, body weight of offspring at birth and at day 4 after birth, or viability index on day 4. No external anomalies were apparent. The NOEL from this screening study was greater than 300 mg/kg for male and female reproductive performance and for

developmental toxicity.

Method:

OECD Guideline No. 422: Combined Repeat Dose and Reproductive/Developmental Toxicity

Screening Test

GLP:

Yes [X]; No []; ? [X]

Test substance:

Methyltetrahydrophthalic anhydride (99.97% purity)

Reliability:

[1] Valid without restriction

Reference:

Report from Safety Assessment Laboratory, Panapharm Laboratories Co., Ltd., 1285 Kurisaki-

machi, Uto-shi, Kumato, 869-04, Japan, 1997

TOXICOLOGICAL INFORMATION CHARACTERISTIC FOR CYCLIC ANHYDRIDE CATEGORY

CORROSIVENESS/IRRITATION

(1) SKIN IRRITATION/CORROSION

Type of Test:

Primary Irritation

Species/strain:

Rabbit

Results:

Highly corrosive []; Corrosive []; Highly irritating [];

Irritating []; Moderate irritating []; Slightly irritating [X]; Not irritating []

Classification:

Highly corrosive (causes severe burns) [];

Corrosive (caused burns) []; Irritating [X]; Not irritating []

Method:

Draize test

GLP:

Yes [] No [X] ? []

Test substance:

No Data

Remarks:

Score of 1 on a 10 point scale. Classified as irritating in accordance with EC Directive 67/548/EEC.

No other details. [2] valid with restrictions

Reliability:

Reference:

H.F. Smyth, 1969.

(2) EYE IRRITATION/CORROSION

Type of Test:

Primary Eye Irritation

Species/strain:

Rabbit

Results:

Highly corrosive []; Corrosive []; Highly irritating [X];

Irritating []; Moderate irritating []; Slightly irritating []; Not irritating []

Classification:

Irritating []; Not irritating []; Risk of serious damage to eyes [X]

Method:

Draize test

GLP:

Yes [] No [X] ? []

Test substance:

No Data

Remarks:

Score of 9 on a 10 point scale. Classified as irritating in accordance with EC Directive 67/548/EEC.

Reliability:

[2] valid with restrictions

Reference:

H.F. Smyth, 1969.

SKIN SENSITIZATION B.

Specific studies were unavailable; however, in accordance with Directive 67/548/EEC, appropriate risk ® phrases for MHHPA include: "May cause sensitization by inhalation and skin contact."

RESPIRATORY SENSITIZATION C.

Note: Organic acid anhydrides in general are low molecular weight, reactive molecules that have been associated with mucosal irritation, skin and respiratory sensitization, severe eye irritation and mild to moderate skin irritation. Some of these compounds are corrosive to the eyes. Sensitization has been noted in various studies on both humans and animals; however, no studies were located for NMA. Symptoms of over-exposure include rhinitis, conjunctivitis and asthma-like effects. Specific serum IgE and IgG antibodies to a fairly large number of anhydrides have been found in exposed workers.

References: Grammer, et. al, 1994 and 1995 (HHPA); Kanerva, et al., 1997 and 1997; Welinder, 1991 (MHHPA) Welinder, et al., 1990 and 1994 (MTHPA); Buffalo Color Corporation, 1995 (NMA)

RESPIRATORY SENSITIZATION (continued) В.

(a)

Method:

A group of 145 workers exposed to MTHPA was investigated. The group was divided into three different exposure categories according to their contact with the epoxy resin. The average exposure levels at the time of the investigation were: 0.085 mg/m^3 (Zone I), 0.014 mg/m^3 (Zone II), and 0.010 mg/m^3 (Zone III) though

the exposure was probably higher earlier.

Results:

Specific IgE antibodies (RAST) to a conjugate between MTHPA and human serum albumin (HAS) were statistically significantly increased (P = 0.001; 26 subjects = 18% positive) in the exposed group, compared to a non-exposed control group (n = 33). Twenty-three exposed subjects were also skin-prick test positive to MTHPA-HAS. There was an association between exposure intensity and RAST-positive persons. The

authors conclude that MTHPA is a sensitizing agent at low levels of exposure.

Reliability:

[2] Valid with restrictions

Remarks:

One worker positive to specific IgE antibodies to a conjugate between MTHPA and human serum albumin

was only exposed for 2 months. Forty-four persons (30%) were smokers, and 16 (11%) atopics.

Reference:

Welinder, et al., 1990

(b)

Method:

In this case study, a 22 year old non-smoking male exhibited work-associated rhinitis and asthma. Bronchial

hyperreactivity following provacation with methacholine, skin prick test positivity and specific

immunoglobulin E (IgE) serum antibodies agains a MTHPA conjugate were noted.

Results:

The disease appeared to be caused by an IgE-mediated allergy to MTHPA.

Reliability:

[2] Valid with restrictions

Remarks:

The patient had a heredity of rhinitis. About 4 months after beginning a job which involved working with MTHPA and methyl imidazole, he experienced nasal secretion and congestion during work. Some time later, he developed chest tightness, a continual productive cough and occasional wheezing. A skin prick test was positive to a conjugate of MTHPA and human serum albumin (HAS). None of the 34 unexposed reference workers in a nearby factory were positive to MTHPOA-HAS. The total immunoglobulin (Ig)E level was 235 kU/I. In the radioallergosorbent test (RAST), specific IgE antibodies to MTHPA-HAS were found (RAST ratio 7.5). In the enzyme-linked immunosorbent assay (ELISA), specific IgG antibodies were not present (optical density 0.32). Sera from 30 referents had a median total IgE of 11 (range 1-127) kU/I. When tested with MTHPA-HAS, the referents' RAST ratio for IgE was 1.1 (range 0.7-2.0), and their ELISA value for

specific IgG was 0.04 (range 0-0.4) in optical density. After a period of vacation, he was removed from exposure to MTHPA. Symptoms gradually disappeared during the next five weeks. The day before a second examination, he was once more exposed to MTHPA at his work site. After about 2 H of exposure, he suffered from nasal congestion and irritation. The time weighted MTHPA exposure at the original job site

was 0.1 mg/m^3 .

Reference:

Nielsen, J., et al., 1989

(c)

Method:

In this case study, a patient positive to a prick test with MTHPA-HAS and specific IgE determination

(who had been occupationally exposed to MTHPA) underwent a bronchial provocation test to cold MTHPA,

heated MTHPA, and a placebo.

Reliability:

[2] Valid with restrictions

Results:

The bronchial provocation test with the placebo and cold MTHPA (0.2 mg/m³) were negative. The bronchial

provocation test to MTHPA heated to workroom temperature (100 °C) was positive. The MTHPA concentration in the chamber air was 7 mg/m³ during the 30 minute provocation test. Wheezing and rales

were induced after 6 H. After six months without exposure, the patient had fewer symptoms. The patient was

diagnosed with probable occupational asthma caused from sensitization to MTHPA.

Reference:

Kanerva, L., et al., 1991

6. REFERENCES

- Dixie Chemical Company, Inc., Material Safety Data Sheet for ECA 100 (1/3/00)
- Grammer, L. C. et al., Hemorrhagic Rhinitis An Immunologic Disease due to Hexahydrophthalic Anhydride, Chest 104(6):1792-1794, 1993
- Grammer, L. C. et al., Risk Factors for Immunologically Mediated Respiratory Disease from Hexahydrophthalic Anhydride, J. Occup. Med. 36(6):642-646, 1994
- H.F. Smyth. American Industrial Hygiene Association Journal 30:470, 1969.
 - Hill Top Research. Unpublished Report 78-645-21, July 25, 1978.
 - Hatano Research Institute Report, Food and Drug Safety Center, 729-5 Ochai, Hadano-shi, Kanagawa, 257, Japan, 1997.
- Kanerva, L. et al., Delayed and Immediate Allergy caused by Methylhexahydrophthalic Anhydride, Contact Dermatitis 36(1):34-38, 1997
 - Kanerva, L. et al., Airborne Allergic Contact Urticaria from Methylhexahydrophthalic Anhydride and Hexahydrophthalic Anhydride Contact Dermatitis 41(6):339-341, 1999
 - Kanerva, L., et al., Immediate and Delayed Allergy from Epoxy Resins Based on Diglycicil Ether of Bisphenol A, Scand. J. Work Environ. Health 17: 208-215, 1991.
 - Klimisch, H. J., et al., A systematic Approach for Evaluating the Quality of Experimental and Ecotoxicological Data, Regulatory Toxicol. & Pharmacol. 25:1-5, 1997.
 - Lindau Chemical, Material Safety Data Sheet for Lindride 12 (5/1/95)
- Nielsen, J., et al., Allergic Airway Disease Caused by Methyl Tetrahydrophthalic Anhydride in Epoxy Resin, Scand. J. Work Environ. Health 15:154-155, 1989.
 - Office of Environmental Risk Assessment, Ministry of Environment, Japan, Summary "Ecotoxicity Data Table, (Web Address: http://www.eic.orjp/earnet/sesaku/hyo.html), 1997.
 - Safephaun Laboratories Limited, U.K., Unpublished Report, 1987.
- Safety Assessment Laboratory, Panapharm Laboratories Co., Ltd., 1285 Kurisaki-machi, Uto-shi, Kumamoto, 869-0, Japan, 1997.
- Welinder, H., et al., Specific Antibodies to Methyltetahydrophthalic Anhydride in Exposed Workers, Clin. Exp. Allergy 20(6):639-646, 1990.
 - Welinder, H. and Nielsen, J., Immunologic Tests of Specific Antibodies to Organic Acid Anhydrides, Allergy 46:601-609, 1991
 - Welinder, H. E. et al., Exposure-Response Relationships in the Formation of Specific Antibodies to Hexahydrophthalic Anhydride in Exposed Workers, Scand. J. Work Environ. Health 20(6):459-465, 1994

HIGH PRODUCTION VOLUME (HPV) CHALLENGE PROGRAM

APPENDIX 5

ROBUST SUMMARIES

FOR

NADIC METHYL ANHYDRIDE (25134-21-8)

Submitted to the U.S. EPA

 $\mathbf{B}\mathbf{y}$

The Industrial Health Foundation, Inc. Cyclic Anhydride Committee

Consortium Registration Number:

March, 2001

CONTENTS

Page

	1.	SUBSTANCE INFORMATION	1
	2.	PHYSICAL-CHEMICAL DATA	2
	۷.	A MEI TING POINT	2
		R ROII ING POINT	2
		C VAPOR PRESSIRE	2
		D. PARTITION COEFFICIENT n-OCTANOL/WATER	3
		E WATER SOLUBILITY	3
		F. pH VALUE, pKa VALUE	3
	3.	ENVIRONMENTAL FATE AND PATHWAYS	4
	٥.	A PHOTODEGRADATION	4
		R STABILITY IN WATER	4
1		C RIODEGRADATION	4
		D. TRANSPORT AND DISTRIBUTION	4
	4	ECOTOXICITY	4
	₹.	A CUTE/BROLONGED TOXICITY TO FISH	4
		P. ACUTE TOYICITY TO AQUATIC INVERTEBRATES - DAPHNIA	4
		C. TOXICITY TO AQUATIC PLANTS - ALGAE	5
	5.	TOXICITY	5
	J.	A ACUTE TOXICITY	5
4		(1) ACTITE ORAL TOXICITY	3
		(2) ACUTE INHALATION TOXICITY)
		(3) ACUTE DERMAL TOXICITY	0
PA.		R REPEATED DOSE TOXICITY (GENERAL)	O
		C GENETIC TOXICITY IN VITRO	0
		(1) BACTERIAL TEST	O
*		(2) NON-BACTERIAL IN VITRO TEST	1
		D. REPRODUCTIVE TOXICITY	1
		E. DEVELOPMENTAL TOXICITY	. 7
~	6.	TOXICOLOGICAL INFORMATION CHARACTERISTIC FOR CYCLIC ANHYDRIDE CATEGORY	7
	0.	A CORROSIVENESS/IRRITATION	/
		(1) SKIN IRRITATION/CORROSION	/
***		(2) EVE IRRITATION/CORROSION	. 8
		R SKIN SENSITIZATION	. 0
		C. RESPIRATORY SENSITIZATION	. 9
F	7	PEFERENCES	. 10

SUBSTANCE INFORMATION 1.

CAS-Number

25134-21-8

Name

Nadic Methyl Anhydride

Name

5-Norbornene-2,3-Dicarboxylic Anhydride, Methyl-; Methyl-5-norbornene-2,3-dicarboxylic; 4,7-Methanoisobenzofuran-1,3-dione,3a,4,7,7a-tetrahydromethyl; Methylbicyclo (2,2,1) hept-5-ene-2,3-

dicarboxylic anhydride; Nadic Methyl Anhydride; NMA

EINECS-Number

2466448

Molecular Formula

 $C_{10}H_{10}O_3$

Structural Formula

D1-Me

Other Chemical

Identity/Synonyms

Methyl-5-norbornene-2,3-dicarboxylic anhydride; 4,7-Methanoisobenzofuran-1,3-dione,3a,4,7,7a -tetrahydromethyl; Methylbicyclo (2,2,1) hept-5-ene-2,3-dicarboxylic anhydride; Nadic Methyl

Anhydride; NMA

Molecular Weight

178.2

Type of Substance

element []; inorganic []; natural substance []; organic [X]; organometallic []; petroleum

product []

Physical State (at 20°C and 1.013 hPa)

gaseous []; liquid [X]; solid []

Purity

99% weight/weight

SYNONYMS

Bicyclo (2,2,1) Hept-5-ene-2,3-Dicarboxylic Anhydride, Methyl; 5-Norbornene-2,3-Dicarboxylic

Anhydride, Methyl-; 4,7-Methanoisobenzofuran-1,3-dione,3a,4,7,7a-tetrahydromethyl; Nadic

Methyl Anhydride; NMA

IMPURITIES

CAS No:

Not Found

EINECS No:

Not Listed

Name:

Free Acid

Value:

1% (maximum weight/weight)

PHYSICAL-CHEMICAL DATA 2.

MELTING POINT

Value:

<18 °C

Decomposition:

Yes [] No [X] Ambiguous [] Yes [] No [X] Ambiguous []

Sublimation: Method:

No Data

GLP:

Yes [] No [] ? [X] [4] Not assignable

Reliability: Remarks:

Becomes "glassy"

Reference:

Buffalo Color Corporation, 12/95; Buffalo Color Corporation, MSDS 127-2641 (12/8/97)

BOILING POINT

Value:

140 °C (Approximate)

Pressure:

10 mm Hg

Decomposition:

Yes [] No [X] Ambiguous []

Method:

No Data

GLP:

Yes [] No [] ? [X] [4] Not assignable

Reliability: Remarks:

None

Reference:

Buffalo Color Corporation, MSDS 127-2641 (12/8/97); Lonza Inc./Lonza Spa, NMA MSDS,

12/14/98

VAPOR PRESSURE C.

(a)

Value:

1.5 mm Hg

Temperature:

30 °C

Method:

calculated []; measured []? [X]

No Data

GLP:

Yes [] No [] ? [X]

Reliability:

[2] Valid with restrictions

Remarks:

Estimated

Reference:

Buffalo Color Corporation, Technical Bulletin, "Anhydrides"

(b)

Value:

5.0 mm Hg

Temperature:

120 °C

Method:

calculated []; measured []? [X]

No Data

GLP:

Yes [] No [] ? [X]

Reliability:

[2] Valid with restrictions

Remarks:

None

Reference:

Buffalo Color Corporation, MSDS 127-2641 (12/8/97); Lonza Inc./Lonza Spa, NMA MSDS,

12/14/98

C. VAPOR PRESSURE (continued)

(c)

Value:

0.1 mm Hg

Temperature:

20 °C

Method:

calculated []; measured []? [X]

No Data

GLP:

Yes [] No [] ? [X]

Reliability:

[2] Valid with restrictions

Remarks:

Approximate

Reference:

Buffalo Color Corporation, Technical Bulletin, "Anhydrides"

D. PARTITION COEFFICIENT log₁₀Pow

Log₁₀ Pow:

 1.35 ± 0.03

Temperature:

No Data

Method:

calculated []; measured []? [X]

GLP:

Yes [] No [] ? [X]

Reliability:

[4] Not assignable

Remarks:

Octanol/Water Partition Coefficient, P = 22.4

Reference:

Fuhr, A.B./J.A. Gouck, 1980 (memo); Buffalo Color Corporation, MSDS 127-2641 (12/8/97)

E. WATER SOLUBILITY

Value:

Insoluble

Temperature:

No Data

Description:

Miscible[]; Of very high solubility [];

Of high solubility []; Soluble []; Slightly soluble [];

Of low solubility [X]; Of very low solubility []; Not soluble [X]

Method:

No Data

GLP:

Yes [] No [] ? [X]

Reliability:

[2] Valid with restrictions

Remarks:

Insoluble in water, but will hydrolyze to diacid in presence of water or and cold acid (pH = 5). Hydrolyzes and forms dibasic salt in cold alkalis (pH=9). Soluble in toluene, acetone, benzene,

naptha, and xylene. Probably soluble in CHCl₃, 1,1,1-Trichloroethylene, ether and cyclohexane.

Reference:

Buffalo Color Corporation, 12/95; Buffalo Color Corporation, MSDS 127-2641 (12/8/97)

F. pH Value, pKa Value

pH Value:

2.4

Concentration:

10% aqueous solution

Temperature:

No Data

Method:

No Data

GLP:

Yes [X] No [] ? []

pKa value

Not Given

Reliability:

[4] Not assignable

Remarks:

pH of diacid estimated at approximately 4 by analogy to HHPAA

Reference:

FDRL Report of Study 6771F, February 27, 1981.

ENVIRONMENTAL FATE AND PATHWAYS 3.

PHOTODEGRADATION

No Data

B. STABILITY IN WATER

Not Stable - Will hydrolyze to diacid.

BIODEGRADATION C.

(a)

Type:

Aerobic [X]; Anaerobic []

Inoculum:

Activated Sludge

Concentration:

10 mg/L (test substance)

Medium: Degradation: No Data 0.0 %

No Data

Kinetics: Method:

OECD Guideline 303A

Test Substance:

Nadic methyl anhydride (Purity unknown)

Results:

Zero percent biodegradation as measured by BOD. Approximately 1.0% biodegradation as

measured by TOC. NMA was hydrolyzed to the corresponding acid in the three replicate tests

conducted.

Test Conditions:

The test substance concentration was 100 mg/L. The activated sludge concentration as the concentration of suspended solid was 30 mg/L. The volume of the test solution was 300 ml.

Cultivation temperature was constant at 25 °C for the 28 day duration.

GLP:

Yes [X] No [] ? []

Reliability:

[2] Valid with restrictions

Remarks:

Biochemical Oxygen Demand (BOD) was determined and Total Organic Carbon (TOC) was

analyzed.

Reference:

Report summary cited by the Japan Chemical Industry Ecology-Toxicology Information

Center, October, 1992

(b)

Type:

Calculated ThOD

Value:

ThOD = $1.89 \text{ g O}_2/\text{g}$

Method:

No Data - Calculated. No [] ? [X]

GLP:

Yes [] [4] Not assignable

Reliability: Remarks:

None

Reference:

Buffalo Color Corp., 12/95

ECOTOXICITY

ACUTE/PROLONGED TOXICITY TO FISH

No Data

ACUTE TOXICITY TO AQUATIC INVERTEBRATES - DAPHNIA В.

No Data

TOXICITY TO AQUATIC PLANTS - ALGAE C.

No Data

TOXICITY 5.

ACUTE TOXICITY

(1) ACUTE ORAL TOXICITY

(a)

Type:

 LD_0 []; LD_{100} []; LD_{50} [X]; LDL_0 []; Other []

Species/strain:

Sprague-Dawley Rats - Female and Male

Value:

958 mg/kg (856-1077 CL)

Method:

Single undiluted oral dose was administered to 5 rats/sex/dose at doses of 650, 801, 987, 1217 and

1530 mg/kg. OECD Study.

GLP:

Yes [X] No []?[]

Test substance:

Undiluted liquid

Reliability:

[1] Valid without restrictions.

Remarks:

Mortality occurred at all dose levels: One (1) of 5 males and 0 of 5 females at 650 mg/kg; 1 of 5 males and 1 of 5 females at 801 mg/kg; 2 of 5 males and 2 of 5 females at 987 mg/kg; 5 of 5 males and 4 of 5 females at 1217 mg/kg; 5 of 5 males and 5 of 5 females at 1530 mg/kg. All deaths occurred within 6 days post-dosing. Clinical signs in those rats that died included weight loss, blood

in urine, and decreased activity. Survivors gained weight normally. Necropsy findings in decedents

included dark lungs and blood-like fluid in the intestines.

Reference:

Food and Drug Research Laboratories, Study No. 6771F, 1/20/81.

(b)

Type:

 $\mathrm{LD_0}\left[\ \right]; \mathrm{LD}_{100}\left[\ \right]; \mathrm{LD}_{50}\left[X\right]; \mathrm{LDL_0}\left[\ \right]; \mathrm{Other}\left[\ \right]$

Species/strain:

Rat

Value:

914 mg/kg

Method:

No Data

GLP:

Yes [] No [] ? [X]

Test Substance:

No Data

Reliability:

[4] Not assignable

Remarks:

Limited data available. Details of toxic effects not reported.

Reference:

NIOSH/RTECS, April 1989, RB 91000

(2) ACUTE INHALATION TOXICITY

Type:

 $LC_0[]; LC_{100}[]; LC_{50}[]; LCL_0[]; Other[X]$ Sprague-Dawley Rats - Female and Male

Species/strain:

4 hours

Exposure time: Value:

750 mg/m³ (aerosol), lethal level

Method:

Modified OECD Limit Test. Five(5) rats/sex were exposed to an aerosol of NMA for 4 hours and

observed for 14 days. Toxic signs and body weights were taken periodically and gross autopsies

were conducted at termination.

GLP:

Yes [X] No [] ? []

Test substance:

90% NMA in ethyl alcohol

Reliability:

[2] valid with restrictions.

(2) ACUTE INHALATION TOXICITY (continued)

Aerosol concentration was determined gravimetrically. Geometric mean particle size was 3.2 µm Remarks:

with a GSD of 2.1. Ninety-three percent (93%) of particles were less than 10 μm . Three (3) of five males and 5 of 5 females died between 3 and 7 days post-dosing. Toxic signs included labored breathing, nasal discharge, urinary incontinence and bloody urine, cloudy eyes and weight loss. Gross autopsy showed pale organs related to vascular congestion. A parallel study with an ethyl

alcohol aerosol produced no effects.

Food and Drug Research Laboratories, Study No. 6771F, 3/24/81. Reference:

(3) ACUTE DERMAL TOXICITY

(a)

Type:

 LD_0 []; LD_{100} []; LD_{50} [X]; LDL_0 []; Other []

Species/strain:

Value:

Ti_FRAI_f rats 4920 mg/kg (3670-6590 CL)

Method:

NMA was applied dermally at doses of 2000, 3000, 4000 and 5000 mg/kg for 24 hours and rats were observed for 14 days post-dosing. Five (5) males and 5 females were used at each dose. Clinical signs and body weights were periodically monitored. At termination of dosing, at 24 hours

and periodically thereafter, the skin was carefully examined for adverse reactions.

GLP:

Yes [] No [] ? [X]

Test substance:

No Data

Reliability:

[2] valid with restrictions.

Remarks:

Mortality was: 0 of 5 M and 0 of 5 F at 2000 mg/kg; 1 of 5 M and 1 of 5 F at 3000 mg/kg; 2 of 5 M and 1 of 5 F at 4000 mg/kg; and 2 of 5 M and 3 of 5 F at 5000 mg/kg. Clinical signs included a reduction in spontaneous motility, ataxia, eyelid closure, dulled response to pain, and irregular respiration (disappeared in survivors by 5 days post-dosing). On the basis of skin reactions, the

authors called NMA a mild skin irritant.

Reference:

CIBA-Geigy Laboratory, 9/27/77.

(b)

Type:

 LD_0 [X]; LD_{100} []; LD_{50} []; LDL_0 []; Other [] New Zealand albino rabbits - male and female

Species/strain: Value:

> 2000 mg/kg.

Method:

Modification of OECD Limit Test. A single dose (2000 mg/kg) was given dermally to 5 male and 5 female rabbits, allowed to stay on the skin for 24 hours, and the animals were then observed for 14 days post-dosing. Clinical signs and body weights were monitored periodically and gross autopsies

were performed upon termination.

GLP:

Yes [X] No [] ? []

Test substance:

Undiluted NMA

Reliability:

[2] valid with restrictions.

Remarks:

All rabbits survived and gained weight through 14 days post-dosing. Clinical signs included slight nasal discharge and loss of appetite. Mild skin irritation was noted on several occasions. Necropsies

were unremarkable.

Reference:

Food and Drug Research Laboratories, Study No. 6771F, 3/21/81.

REPEATED DOSE TOXICITY (General) В.

No Data

C. GENETIC TOXICITY IN VITRO

(1) BACTERIAL

No Data

(2) NON-BACTERIAL IN VITRO TEST (CHROMOSOME ABERRATION)

No Data

D. REPRODUCTIVE TOXICITY

No Data

E. DEVELOPMENTAL TOXICITY

No Data

6. TOXICOLOGICAL INFORMATION CHARACTERISTIC FOR CYCLIC ANHYDRIDE CATEGORY

A. CORROSIVENESS/IRRITATION

(1) SKIN IRRITATION/CORROSION

(a)

Type of Test:

Primary Irritation

Species/strain:

New Zealand albino rabbit

Results:

Highly corrosive []; Corrosive []; Highly irritating [];

Irritating []; Moderately irritating []; Slightly irritating [X]; Not irritating []

Classification:

Highly corrosive (causes severe burns) [];

Corrosive (caused burns) []; Irritating [X]; Not irritating []

Method:

Draize Test (Modification of OECD test)

GLP:

Yes [X] No []?[]

Test substance:

No Data

Reliability:

[2] Valid with restrictions

Remarks:

On a scale of 8, a 50% suspension in PEG 400 was scored 0.75. No irritation was seen at a

concentration of 6.5%

Reference:

FDRL Report of Study 6771-F, 3/5/82.

(b)

Type of Test:

Primary Irritation

Species/strain:

Rabbit

Results:

Highly corrosive []; Corrosive []; Highly irritating [];

Irritating []; Moderately irritating [X]; Slightly irritating []; Not irritating []

Classification:

Highly corrosive (causes severe burns) [];

Corrosive (caused burns) []; Irritating [X]; Not irritating []

Method:

Draize Test (Modification of OECD Test)

GLP:

Yes [X] No [] ? []

Test substance:

No Data

Reliability:

[2] Valid with restrictions

Remarks:

Undiluted NMA was scored 3.9 on a scale of 8.

Reference:

FDRL Report of Study 6771-F, 3/5/82.

(2) EYE IRRITATION/CORROSION

(a)

Type of Test:

Acute Eye Irritation

Species/strain:

New Zealand albino rabbit

Results:

Highly corrosive [X]; Corrosive []; Highly irritating [];

Irritating []; Moderate irritating []; Slightly irritating []; Not irritating []

Classification:

Irritating []; Not irritating []; Risk of serious damage to eyes [X]

Method:

Draize Test

GLP:

Yes [X] No [] ? []

Test substance:

No Data

Reliability:

[2] Valid with restrictions

Remarks:

No wash. 83 on scale of 110 at 72 hours.

Reference:

FDRL Report of Study 6771-F, 2/27/81.

(b)

Type of Test:

Acute Eye Irritation

Species/strain:

New Zealand albino rabbit

Results:

Highly corrosive []; Corrosive []; Highly irritating [];

Irritating [X]; Moderate irritating []; Slightly irritating []; Not irritating []

Classification:

Irritating []; Not irritating []; Risk of serious damage to eyes [X]

Method:

Draize Test

GLP:

Yes [X] No [] ? []

Test substance:

No Data

Reliability:

[2] Valid with restrictions

Remarks:

4 second washout. 12-37 on scale of 110 at 72 H.

Reference:

FDRL Report of Study 6771-F, 3/21/81

(c)

Type of Test:

Acute Eye Irritation

Species/strain:

Rabbit

Results:

Highly corrosive []; Corrosive [X]; Highly irritating [];

Irritating []; Moderate irritating []; Slightly irritating []; Not irritating []

Classification:

Irritating []; Not irritating []; Risk of serious damage to eyes [X]

Method:

Draize Test

GLP:

Yes [] No [] ? [X]

Test substance:

No Data

Reliability:

[2] Valid with restrictions

Remarks: Reference: No wash. 67 on scale of 110 at 72 H. Ferber, K.H./J.F. Best (letter), 10/10/66

B. SKIN SENSITIZATION

Type:

Species/Strain:

Human

Results:

Sensitizing [X]; Not sensitizing []; Ambiguous []

Classification:

Sensitizing [X]; Not sensitizing []

Method:

Sensitization Patch Test

Test Substance:

No Data

Reliability:

[2] Valid with restrictions

Remarks:

Thirty four (34) out of 53 human subjects showed skin reactions during induction and at challenge

indicating positive evidence of sensitization.

Reference:

FDRL, 5/7/82.

C. RESPIRATORY SENSITIZATION

Note: Organic acid anhydrides in general are low molecular weight, reactive molecules that have been associated with mucosal irritation, skin and respiratory sensitization, severe eye irritation and mild to moderate skin irritation. Some of these compounds are corrosive to the eyes. Sensitization has been noted in various studies on both humans and animals; however, no studies were for NMA. By analogy to other acid anhydrides, NMA would be expected to cause respiratory sensitization. Industrial medical surveillance has indicated that NMA causes respiratory sensitization. Symptoms of over-exposure may include rhinitis, conjunctivitis and asthma-like effects. Specific serum IgE and IgG antibodies to a fairly large number of anhydrides have been found in exposed workers.

References: Grammer, et. al, 1994 and 1995 (HHPA); Kanerva, et al., 1997 and 1997; Welinder, 1991 (MHHPA) Welinder, et al., 1990 and 1994 (MTHPA); Buffalo Color Corporation, 1995 (NMA)

Type:

Industrial/Medical Surveillance

Results:

Source: Buffalo Color Corporation

A number of customers have advised of complaints of asthmatic reactions to inhaled NMA.

Manufacturers have less trouble in this regard probably because of better enclosure and ventilation.

Transient eye and lung irritation have occasionally been reported.

Remarks:

Manufactured by Buffalo Color Corporation for a number of years without serious or lasting

effects. No special medical surveillance to date. Personal and area monitoring data based on TOC

of dust samples as of 1987 indicate compliance with BCC LV and CV with some exceptions.

No epidemiology.

Reference:

Buffalo Color Corporation, 12/95

7. **REFERENCES**

Buffalo Color Corporation, Material Safety Data Sheet, File 127-2641, August 14, 1979*.

Buffalo Color Corporation, Material Safety Data Sheet, File 127-2641, June 26, 1989.

Buffalo Color Corporation, Material Safety Data Sheet, File 127-2641, December 8, 1997*.

Buffalo Color Corporation, Occupational and Environmental Health Hazard Summary and Evaluation of Commercial Grade Chemicals: Nadic Methyl Anhydride, Issue No. 1 (3/78) and 5, (12/95)*.

Buffalo Color Corporation, Technical Data Sheet, "Anhydrides."

Ciba-Geigy Laboratory, Basle, Switzerland, Unpublished Report, 9/27/77. EPA/OTS, Document 88-920008638, 8/28/92.

FDRL, Report of Study 6771-F, March 24, 1981.

FDRL, Report of Study 6771-F, March 21, 1981.

FDRL, Report of Study 6771-F, February 27, 1981.

FDRL, Report of Study 6771-F, March 5, 1982.

FDRL, Report of Study OE-2471, May 7, 1982.

Fuhr, A.B./J.A. Gouck, August 26, 1980 (memo).

Grammer, L. C. et al., Hemorrhagic Rhinitis – An Immunologic Disease due to Hexahydrophthalic Anhydride, Chest 104(6): 1792-1794, 1993

Grammer, L. C. et al., Risk Factors for Immunologically Mediated Respiratory Disease from Hexahydrophthalic Anhydride, J. Occup. Med. 36(6):642-646, 1994

Japan Chemical Industry Ecology-Toxicology Information Center, Cited Report Summary, October, 1992

Kanerva, L. et al., Delayed and Immediate Allergy caused by Methylhexahydrophthalic Anhydride, Contact Dermatitis 36(1):34-38, 1997

Kanerva, L. et al., Airborne Allergic Contact Urticaria from Methylhexahydrophthalic Anhydride and Hexahydrophthalic Anhydride Contact Dermatitis 41(6):339-341, 1999

Letter, Ferber, K.H./J.F. Best, October 19, 1966. Re: NMA-Biochem. Res.-Product Toxicity*.

Lonza Inc./Lonza Spa, Material Safety Data Sheet for Nadic Methyl Anhydride, 12/8/97

NIOSH, RTEC NO. RB91000, April 1989*.

Welinder, H., et al., Specific Antibodies to Methyltetahydrophthalic Anhydride in Exposed Workers, Clin. Exp. Allergy 20(6):639-646, 1990.

Welinder, H. and Nielsen, J., Immunologic Tests of Specific Antibodies to Organic Acid Anhydrides, Allergy 46:601-609, 1991

Welinder, H. E. et al., Exposure-Response Relationships in the Formation of Specific Antibodies to Hexahydrophthalic Anhydride in Exposed Workers, Scand. J. Work Environ. Health 20(6):459-465, 1994